
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 11 ● Midterm — Preview
● Sorting

○ O(n2)-time algorithms
○ O(n log n)-time algorithms

Sorting I



Data Structures & Advanced Programming 2Williams College CSCI 136

Midterm – Preview



Data Structures & Advanced Programming 3Williams College CSCI 136

A sample midterm was posted today on the course website by Duane.
● It illustrates several question types.
● It illustrates the level of difficulty that you can expect.

Solutions will be posted and discussed on Tuesday’s review session. 

Sample Midterm



Data Structures & Advanced Programming 4Williams College CSCI 136

Update: It has now been posted.



Data Structures & Advanced Programming 5Williams College CSCI 136

An official email will be sent.
Below is a preview.
Midterm Exam
● Thursday night.
● 6pm time slot.
● 8pm time slot.

Review Session
● Tuesday at 4pm.  Location TBA.

Classes and Labs
● No labs next week.
● Class only on Wednesday.

Office Hours
● Aaron on Monday 10am & 2pm in TBL 309A.
● Aaron on Tuesday 10am in TBL 309A.
● Duane on Monday night?  TAs on Wednesday?

Check Google Calendar for updates

Next Week’s Schedule



Data Structures & Advanced Programming 6Williams College CSCI 136

Notes: 
● The Recursion II slides were updated and posted.  Includes a simpler induction proof.
● Added .nanorc file (but it is named nanorc to avoid problems) ← apologies for the delay!



Data Structures & Advanced Programming 7Williams College CSCI 136

Sorting



Data Structures & Advanced Programming 8Williams College CSCI 136

The goal of our sorting problem is to sort an array of n integers in non-decreasing order.
(Our solutions can easily be applied to other types of data that allow comparisons.)

Sorting Problem

Input 
Array of integers x1, x2, …, xn.
Output 
Array y1, y2, …, yn with the same multiset of integers in non-decreasing order.

Sorting a simple array.

1 -5 4 6 -7 4 -3 -7 -5 -3 1 4 4 6



Data Structures & Advanced Programming 9Williams College CSCI 136

Consider the following problems on a list of n integers:
1. Closest pair.  Which pair of integers have the smallest absolute difference?
2. Number of distinct elements.  What is the size of the underlying set?
3. Mode.  Which integer occurs most frequently? 
4. Median.  Which integer (or integers) are in the middle?
5. kth largest.  For example, which integer is the 10th largest?

Activity: Advantages of Sorting?

In each of these cases determine the following:
● Find an O(n2)-time algorithm given an unsorted list.
● Find an O(n)-time algorithm given a sorted list.

When would sorting provide an overall advantage?

Think about this for 2 minutes.
Then discuss it with your neighbor for 3 minutes.



Data Structures & Advanced Programming 10Williams College CSCI 136

Applications of Sorting - Preprocessing for Algorithms
Many algorithms use sorting as an initial preprocessing step:
1. Interval Scheduling.  The ending-first algorithm sorts intervals by ending time.
2. Spanning Trees.  Kruskal’s algorithm sorts by edges by cost.
3. Shortest Paths.  Dijkstra’s algorithm sorts by edges by cost.
4. Huffman Encoding.  Symbols are sorted by frequency.
5. Convex Hull.  Points are sorted by x-coordinate.



Data Structures & Advanced Programming 11Williams College CSCI 136

Properties of Sorting Algorithms
In our analysis we assume that the data is given in an unsorted array.

In some cases we may wish to have algorithms with additional properties:
● An algorithm is in-place if it does not require additional storage.

In-place algorithms cannot create an additional array of any length
either to return the sorted data or as temporary data.

● An algorithm is stable if equal items retain their initial relative order.

Stable algorithms maintain relative orders.

This property can be used to sort data with k keys in k steps (ie deck of cards)

1 -5 4 6 -7 4 -3

-7 -5 -3 1 4 4 61 -5 4 2 -7 4 -3

https://en.wikipedia.org/wiki/Sorting_algorithm#Stability


Data Structures & Advanced Programming 12Williams College CSCI 136

Almost every programming language has a well-known library for sorting.
In practice it is a good idea to use these libraries since they are highly optimized.
● In Python use sorted(L) or L.sort() to sort a list L.
● In Java use Arrays.sort(A) on any array A of Comparable objects.

Libraries and Practical Concerns



Data Structures & Advanced Programming 13Williams College CSCI 136

We describe the following sorting algorithms conceptually, then consider implementations later.
1. Bubble Sort
2. Selection Sort
3. Insertion Sort
4. Merge Sort
5. Quicksort
6. Heap Sort
7. Bucket Sort

It is useful to learn about different sorting algorithms for various reasons:
● The algorithms illustrate different algorithmic principles and techniques.
● Different performance depending on the data.

For example, Bubble Sort runs in O(n2)-time, but it is very fast when the data is nearly sorted.
● Tradeoffs in terms of time/space and various properties.

For example, Merge Sort guarantees O(n log(n))-time but it is tricky to implement in-place.
● Heap Sort is a data-structure based sort.

Sorting Algorithms



Data Structures & Advanced Programming 14Williams College CSCI 136

Sorting in O(n2)-time



Data Structures & Advanced Programming 15Williams College CSCI 136

Bubble Sort
Swap items in positions (1,2), (2,3), …, (n-1,n) if they are out of order.
● The ith pass of this algorithm moves the ith largest value into its correct position, and it can 

stop after examining position (n-i,n-i+1).

The first pass moves the largest value into the last position.

-5 1 4 6 -7 4 -3

1 -5 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

1 -5 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-5 1 4 -7 6 4 -3

-5 1 4 -7 4 6 -3

-5 1 4 -7 4 -3 6

Analysis of Bubble Sort

● It runs in O(n2)-time in the worst-case.
○ There are n passes and each is O(n)-time.

Actually the ith pass takes O(n-i+1)-time and the 
summation n + (n-1) + … + 1 is O(n2).

● If only the largest c values are out of place, then it 
runs in O(c·n)-time.

● It is in-place.

● It is stable if we swap based on < and not ≤.



Data Structures & Advanced Programming 16Williams College CSCI 136

Selection Sort
Find smallest value and move it to the first position.  Repeat on the unsorted section.
● The ith pass of this algorithm moves the ith smallest into position i.
● The move can be done using a swap.

The first three-and-a-half passes of the algorithm.

-7 -5 4 6 1 4 -3

1 -5 4 6 -7 4 -3

-7 -5 4 6 1 4 -3

1 -5 4 6 -7 4 -3

-7 -5 4 6 1 4 -3

-7 -5 4 6 1 4 -3

-7 -5 -3 6 1 4 4

-7 -5 -3 6 1 4 4

Analysis of Selection Sort

● It runs in O(n2)-time in the worst-case.
○ There are n passes and each is O(n)-time.

Actually the ith pass takes O(n-i+1)-time and the 
summation n + (n-1) + … + 1 is O(n2).

● It is in-place.

● It is stable if we choose the first instance of the 
smallest value.



Data Structures & Advanced Programming 17Williams College CSCI 136

Insertion Sort
Assume the first i values are sorted, and insert the i+1st value in the correct position.  
Repeat for i = 1, 2, ... , n-1.
● The ith pass of this algorithm moves the ith smallest into position i.

The complete insertion sorting using 6 passes.

-5 1 4 6 -7 4 -3

1 -5 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

1 -5 4 6 -7 4 -3

-5 1 4 6 -7 4 -3

-7 -5 1 4 6 4 -3

-7 -5 1 4 4 6 -3

-7 -5 -3 1 4 4 6

Analysis of Insertion Sort

● It runs in O(n2)-time in the worst-case.
○ There are n-1 passes and each is O(n)-time.

Actually the ith pass takes O(n-i+1)-time and the 
summation n + (n-1) + … + 1 is O(n2).

● It is in-place.

● It is stable if we insert to the right of any repeated 
value.



Data Structures & Advanced Programming 18Williams College CSCI 136

Sorting in O(n log n)-time

Where will the log(n) 
come from?


