CSCI136 1

e Midterm — Preview

LECture 11 e Sorting

o 0(n?)-time algorithms
o 0(nlog n)-time algorithms

Sorting |

Williams College Data Structures & Advanced Programming CSCI136 2

Midterm - Preview

Williams College

Sample Midterm

Data Structures & Advanced Programming

A sample midterm was posted today on the course website by Duane.

e ltillustrates several question types.

e Itillustrates the level of difficulty that you can expect.

Solutions will be posted and discussed on Tuesday’s review session.

g Cs136
Sample Midterm Wiliams College

This is a closed book exam. You have one hour and 15 minutes to complete the exam. All intended
answers will fit in the space provided. You may use the back of the preceding page for additional space
if necessary, but be sure to mark you answers clearly.

Be sure to give yourself enough time to answer each question— the points should help you manage
your time.

In some cases, there may be a variety of implementation choices. The most credit will be given to
the most elegant and efficient solutions.

Problem | Points | Description Score
1 14 True/False

2 10 Static

3 26 Creating a Set class

4 15 Recursion on Lists

5 12 Big-O

Total 77

I have neither given nor received aid on this examination.

1. (TAPOINTSY e e e e e True/False

1. True/false statements (2 points each). Justify each answer with a sentence or two.

a. Two instances of class Association in the structure package are equal if and only if
their keys are equal, regardless of their values.

b. An instance variable declared as protected can be accessed by any method of the class in
which it is declared.

c. A binary search can locate a value in a sorted Vector in O(logn) time.

Williams College Data Structures & Advanced Programming CSCI 136 4

Resources

Description | Lectures | Labs

Item

A sample midterm.

Update: It has now been posted.

Williams College

Next Week's Schedule

An official email will be sent.
Below is a preview.

Midterm Exam
e Thursday night.
e 6pm time slot.
e 8pm time slot.

Review Session
e Tuesday at 4pm. Location TBA.

Classes and Labs
e No labs next week.
e (lass only on Wednesday.

Office Hours

e Aaron on Monday 10am & 2pm in TBL 309A.
e Aaron on Tuesday 10am in TBL 309A.
e Duane on Monday night? TAs on Wednesday?

CSCI136 5

10

11

12 13 14

15

Check Google Calendar for updates

Williams College

Notes:

The Recursion Il slides were updated and posted. Includes a simpler induction proof.
Added .nanorc file (but it is named nanorc to avoid problems) < apologies for the delay!

CSCI 136

Data Structures & / nced Programming

Data Structures and Advanced Programming

Lectures | Labs | Resources

Mon. Sept. 27 Recursion II Ch.5

Duane: Lecture 8 Notes rec2.java (more recursion
examples),

Aaron: nanorc (.nanorc), 08-recursion.pdf (updated),

Consider the following situation.

e The first person in the line (i.e., the person on the left) is named Oscar.

e If the ith person in line is named Oscar, then the (i+1)st person is named Oscar.
What can we conclude? Why?
Consider variations of the above points, and what we can conclude.

Proof by Induction
Let S(n) be the sum of the first n odd numbers starting from 1. Thatis, S(n) =1+3 +.. + 2n-1.
Theorem: S(n) = n*forallnz>1.

Proof: We will prove that the statement is true by mathematical induction on n.

Base Case: n = 1. In this case, S(1) = 1 is the sum of the first 1 odd number starting from 1.
The statement of the theorem claims S(1) equals 12 = 1. This is true, so the base case is true.

Inductive Assumption: Assume that the statement is true for some k where k 2 1. '.

This is about the level of
difficulty for an inductive _|
proof in this course.

Inductive Conclusion: Now we must prove that the statement is true forn =k + 1.
The sum of the first k+1 odd numbers starting from 1 is

S(k+1) =1+3+ ..+ 2(k+1)-1 = S(k) + 2(k+1)-1.
By the inductive assumption, S(k) = k2. Therefore, we can substitute in this value and continue.
=k2+2(k+1)-1= K+ 2k +2-1=K+2k + 1= (k+1)%
Therefore, S(k+1) = (k+1)2. This proves that the statement is true forn =k + 1.
Therefore, by the principles of mathematical induction, the theorem is true for alln = 1.

CSCI 136

6

Williams College Data Structures & Advanced Programming
2 g g

Sorting

Villiams College Data Structures & Advanced Programming

Sorting Problem

The goal of our sorting problem is to sort an array of n integers in non-decreasing order.
(Our solutions can easily be applied to other types of data that allow comparisons.)

Sorting a simple array.

CSCI136 8

Input
Array of integers x_, x,, .., x_.

Qutput
Armayy., vy,, .., y_Withthe same multiset of integers in non-decreasing order.

Williams College Data Structures & Advanced Programming CSCI136 9

Activity: Advantages of Sorting?

Consider the following problems on a list of n integers:
1. Closest pair. Which pair of integers have the smallest absolute difference?

2. Number of distinct elements. What is the size of the underlying set?
3. Mode. Which integer occurs most frequently?
4. Median. Which integer (or integers) are in the middle?
5. k' largest. For example, which integer is the 10%" largest?
o ¢ ¥&
\ v p
7% 4 \'.‘\

Think about this for 2 minutes.
Then discuss it with your neighbor for 3 minutes.

In each of these cases determine the following:
e Find an O(n?)-time algorithm given an unsorted list.
e Find an O(n)-time algorithm given a sorted list.

When would sorting provide an overall advantage?

Applications of Sorting - Preprocessing for Algorithms

Many algorithms use sorting as an initial preprocessing step:

Spanning Trees. Kruskal's algorithm sorts by edges by cost.
Shortest Paths. Dijkstra’s algorithm sorts by edges by cost.
Huffman Encoding. Symbols are sorted by frequency.
Convex Hull. Points are sorted by x-coordinate.

a bk wp=

Interval Scheduling. The ending-first algorithm sorts intervals by ending time.

CSCI 136 10

Williams College Data Structures & Advanced Programming CSCI 136 11

Properties of Sorting Algorithms

In our analysis we assume that the data is given in an unsorted array.

In some cases we may wish to have algorithms with additional properties:
e Analgorithm is in-place if it does not require additional storage.

1 5.4 6 -7 4 -3

In-place algorithms cannot create an additional array of any length
either to return the sorted data or as temporary data.

e Analgorithm is stable if equal items retain their initial relative order.

1 5 4 2|74 3 —. 7 5 3 1 4 4 6

Stable algorithms maintain relative orders.
This property can be used to sort data with k keys in k steps (ie deck of cards)

https://en.wikipedia.org/wiki/Sorting_algorithm#Stability

Williams College Data Structures & Advanced Programming CSCI136 12

Libraries and Practical Concerns

Almost every programming language has a well-known library for sorting.

In practice it is a good idea to use these libraries since they are highly optimized.
e InPythonuse sorted (L) orL.sort () tosortalistL.
e InJavauseArrays.sort (A) onany array A of Comparable objects.

Williams College Data Structures & Advanced Programming CSCI136 13

Sorting Algorithms

We describe the following sorting algorithms conceptually, then consider implementations later.
Bubble Sort

Selection Sort

Insertion Sort

Merge Sort

Quicksort

Heap Sort

Bucket Sort

is useful to learn about different sorting algorithms for various reasons:
e The algorithms illustrate different algorithmic principles and techniques.

e Different performance depending on the data.
For example, Bubble Sort runs in O(n?)-time, but it is very fast when the data is nearly sorted.

e Tradeoffs in terms of time/space and various properties.
For example, Merge Sort guarantees O(n log(n))-time but it is tricky to implement in-place.

e Heap Sort is a data-structure based sort.

- Nooabkwd =

Williams College Data Structures & Advanced Programming CSCI 136 14

Sorting in O(n?%)-time

Williams College Data Structures & Advanced Programming CSCI 136 15

Bubble Sort

Swap items in positions (1,2), (2,3), .., (n-1,n) if they are out of order.
e The i" pass of this algorithm moves the i largest value into its correct position, and it can
stop after examining position (n-i,n-i+1).

1.5 4 .6 -7 4 3 Analysis of Bubble Sort
51 4 6 -7 4 -3 e It runs in O(n?)-time in the worst-case.

o There are n passes and each is O(n)-time.
5 1 4 6 -7 4 -3 Actually the ith pass takes O(n-i+1)-time and the

summation n + (n-1) + ... + 1 is O(n?).

e If only the largest ¢ values are out of place, then it
runs in O(c-n)-time.

e ltisin-place.
S5 1 4 -7 4 6 -3

e |tis stable if we swap based on < and not <.
S5 1.4 -7 4 -3 6

The first pass moves the largest value into the last position.

Williams College Data Structures & Advanced Programming CSCI 136 16

Selection Sort

Find smallest value and move it to the first position. Repeat on the unsorted section.
e The i" pass of this algorithm moves the i smallest into position i.
e The move can be done using a swap.

1.5 4 6 -7 4 -3 Analysis of Selection Sort

-7 5 4.6 1 4 3 It runs in O(n?)-time in the worst-case.
o There are n passes and each is O(n)-time.
7 -5 4 6 1 4 @ -3 Actually the ith pass takes O(n-i+1)-time and the

summation n + (n-1) + ... + 1 is O(n?).

It is in-place.

1
N
1
(@)}
N
»
—
N
1
w
°

It is stable if we choose the first instance of the
smallest value.

-7 -5 -3 6 1 4 4

-7 -5 -3 6 1 4 4

The first three-and-a-half passes of the algorithm.

Williams College Data Structures & Advanced Programming CSCI 136 17

Insertion Sort

Assume the first i values are sorted, and insert the i+1%t value in the correct position.
Repeat fori=1,2,...,n-1.
e The i" pass of this algorithm moves the i smallest into position i.

1 5 4 6 -7 4 -3 Analysis of Insertion Sort

-5 1 4 6 -7 4 -3

It runs in O(n?)-time in the worst-case.

o There are n-1 passes and each is O(n)-time.
-5 1 4 6 -7 4 -3 Actually the ith pass takes O(n-i+1)-time and the
summation n + (n-1) + ... + 1 is O(n?).

It is in-place.

1
N
1
(@)}
—
N
(o))
N
1
w
°

It is stable if we insert to the right of any repeated
value.

7 5 1 4 4 6 -3

7 5 3 1 4 4 6

The complete insertion sorting using 6 passes.

Williams College Data Structures & Advanced Programming CSCI 136 18

Where will the log(n)
come from?

[}
.

Sorting in O(n log n)-time

//I'\ .\

—_

N
o

