Williams College

Lecture 10
Lists Il

Data Structures & Advanced Programming

Midterm discussion

on Friday
@
e Lab 3 — Preview
e Linked Lists
o Nodes
0 AddFirst
0 RemoveFirst
0 AddLast
O RemoveLast

Williams College Data Structures & Advanced Programming CSCI136 2

Lab 3 — Preview

Williams College Data Structures & Advanced Programming

Computer Science CS136 (Fall 2021)
Duane Bailey & Aaron Williams
Laboratory 3

Lists with Dummy Nodes

Objective. To gain experience implementing List-like objects.

Discussion. Anyone attempting to understand the workings of a doubly linked list understands that it
is potentially difficult to keep track of the references. One of the problems with writing code associated
with linked structures is that there are frequently boundary cases. These are special cases that must be
handled carefully because the “common” path through the code makes an assumption that does not hold
in the special case.

Take, for example, the addFirst method for DoublyLinkedLists:

The presence of the if statement suggests that sometimes the code must reassign the value of the tail

public void addFirst(E value) reference. Indeed, if the list is empty, the first element must give an initial non-null value to tail.

// pre: value is not null Keeping track of the various special cases associated with a structure can be very time consuming and

// post: adds element to head of list error-prone.

{ One way that the complexity of the code can be reduced is to introduce dummy nodes. Usually,
// comstruct a new element, making it head there is one dummy node associated with each external reference associated with the structure. In the
head = new DoublyLinkedNode<>(value, head, null); DoublyLinkedList, for example, we have two references (head and tail); both will refer to a dedicated
// fix tail, if necessary dummy node:

if (tail == null) tail = head;
count++; count head tail value

: 1.1 [—TL

THE USE OF DUMMY NODES.

In Lab 3, you will implement a doubly-linked list with “dummy nodes”.
More specifically, you'll extend DoublyLinkedList<E> into a new class LinkedList<E>.
You'll overwrite some of the trickier methods with simplifications derived from the dummy nodes.

Williams College Data Structures & Advanced Programming CSCI 136 4

Linked Lists

Williams College Data Structures & Advanced Programming CSCI136 5

Nodes

Williams College

Nodes

Linked lists are comprised of nodes. Each node can be created or deleted one at a time.
This gives linked lists a fundamental advantage over arrays: They can be resized efficiently.

CSCI136 6

Every node contains at least the following:

e Some type of data. The structure5 package refers to a generic type or class <E>.
e References to one or more nodes, each of which is null when there is no corresponding node.
Note that references are known as pointers in some other languages.

In a singly linked list, the nodes only have references to the next node.
In a doubly linked list, the nodes have references to the next node and the previous node.

next‘ ‘prev next‘

A node in a singly linked list. A node in a doubly linked list.

data data

At minimum, a linked list also needs to store a reference to the first node, which is called the head.
It may have a reference to the last node called the tail. It may keep count of its number of nodes.

Williams College Data Structures & Advanced Programming CSCI136 7

public class Node<E>

{ public void setNext(Node<E> next) {

protected E data; nextElement = next;

protected Node<E> nextElement; }

public E value() {

public Node(E v, Node<E> next) {
return data;

data = v; }
nextElement = next;

} public void setValue(E value) {

public Node(E v) { data = value;

this(v,null); }

} public String toString() {

public Node<E> next() { return "<Node: "+value()+">";

return nextElement;

}
}

The Node class (without comments) in the structures package.
e Why are data and nextElement setto protected?
e What is the purpose of the accessor methods (e.g. value())?
e What is the purpose of the mutator methods (e.g. setvalue(E value))?

Williams College Data Structures & Advanced Programming

public class SinglylLinkedList<E> extends AbstractList<E>
{

protected int count; // list size

protected Node<E> head; // ref. to first element

public SinglylLinkedList()

{

head = null;
count = 0;

The singlyLinkedList class uses the Node class for its nodes.

e |t also keeps a count property.

CSCI136 8

Williams College Data Structures & Advanced Programming CSCI 136

public class DoublylLinkedNode<E> public void setNext(DoublyLinkedNode<E> next) {

{ i T nextElement = next;
protecte ata; }

protected DoublylLinkedNode<E> nextElement;

protected DoublylinkedNode<E> previousElement; public void setPrevious(DoublyLinkedNode<E> previous) {

reviousElement = previous;
public DoublyLinkedNode(E v, 3 B & 3

DoublyLinkedNode<E> next,

DoublyLinkedNode<E> previous) { public void setValue(E value) {

data = v; data = value;

nextElement = next; 1

if (nextElement != null)
nextElement.previousElement

previousElement = previous;

if (previousElement != null)
previousElement.nextElement = this;

this; public boolean equals(Object other) {

DoublyLinkedNode that = (DoublylLinkedNode)other;
if (that == null) return false;
if (that.value() == null || value() == null)

¥ {

public DoublyLinkedNode(E v) { } elzgt:rn yaluel), S thatuveluel);

} this(v,null,null); return value().equals(that.value());
}

public DoublyLinkedNode<E> next() { i

EBLUIN, NextELoment public int hashCode() {

if (value() == null) return super.hashCode();
else return value().hashCode();

}

public DoublylLinkedNode<E> previous() { }
return previousElement;
¥ public String toString() {

public E value() { return "<DoublyLinkedNode: "+value()+">";

return dataj;

} }
The DoublyLinkedNode class (without comments) in the structures package.
e Why is the first constructor more complicated? What is it doing?
e Whatis this? Howisitusedin= this; and this(v,null,null)?
e Why does equals check that == null and that.value() == null (inthat order)?

}

Williams College Data Structures & Advanced Programming CSCI 136 10
public class DoublyLinkedList<E> extends AbstractList<E>
{

protected int count;

protected DoublylLinkedNode<E> head;

protected DoublylLinkedNode<E> tail;

public DoublyLinkedList()
{

head null;

tail = null;

count = 0;

The DoublyLinkedList class uses the DoublyLinkedNode class for its nodes.
e |t also keeps a count property.

Williams College Data Structures & Advanced Programming CSCI 136 11

AddFirst

Williams College Data Structures & Advanced Programming

Adding a value to the front of a singly linked list

Let’s conceptualize how to add a value to the front of
a singly linked list.

After we identify everything that needs to be done,
we'll take a look at the implementation in the
structure5 package.

Checklist

e Make a new node.
o Set data to the new value.
o Set next to reference the current first node.

e Update the head reference to the new node.
e Increment count.

Edge Cases
e What if the list is currently empty?

Do the same steps handle this case?

CSCI 136 12

data

next‘
Before the addition.
data next‘

I
next‘

After the addition.

data

Williams College Data Structures & Advanced Programming CSCI136 13

e

Oparam value value to be added to head
public void addFirst(E value)
{

// note order that things happen:

// head is parameter, then assigned

head = new Node<E>(value, head);

count++;

The implementation is pretty nice!
e Let's step through the Checklist again.
e Let's also check that the Edge Case is handled property.

Williams College Data Structures & Advanced Programming CSCI 136 14

Adding a value to the front of a doubly linked list *
head prev]data
Let’s conceptualize how to add a value to the front of

a doubly linked list.

next‘
L XX]

dat t tail
After we identify everything that needs to be done, m—>‘prev e nex_|_>
we'll take a look at the implementation in the
structureb package, Before the addition.
Checklist i _]
e You got this! prev]data next‘
' <—L |
Edge Cases A Y
! data

e You got this!

next
prev —I—)
prev next tail
..._)

After the addition.

data

Williams College Data Structures & Advanced Programming CSCI 136 15

Activity: Completing the Conceptualization

Complete the steps needed for adding a value to the front of a doubly linked list.
e Checklist
e Edge Cases

Hint: There is at least one new edge case to consider.

| [
]

Think about this for 2 minutes.
Then discuss it with your neighbor for 3 minutes.

Time permitting
e Would this be any easier with dummy nodes?

[%%
Add a value to head of list.

@pre value is not null
@post adds element to head of list

% % X KKK

@param value value to be added.

J

public void addFirst(E value)

{

// construct a new element, making it head

head = new DoublylLinkedNode<E>(value, head, null);
// fix tail, if necessary

if (tail == null) tail = head;

count++;

Williams College Data Structures & Advanced Programming CSCI 136 17

RemoveFirst

Williams College Data Structures & Advanced Programming CSCI 136 18

public E removeFirst()

{
Node<E> temp = head;
head = head.next(); // move head down list
count——;
return temp.value();
}

removeFirst in SinglyLinkedList
e Any surprises?
e What happened to the node that was removed?

Williams College Data Structures & Advanced Programming CSCI 136 19

public E removeFirst()

{
Assert.pre(!isEmpty(),"List is not empty.");
DoublyLinkedNode<E> temp = head;
head = head.next();
if (head !'= null) {
head.setPrevious(null);
} else {
tail = null; // remove final value
}
temp.setNext(null);// helps clean things up; temp is free
count——;
return temp.value();
}

removeFirst in DoublyLinkedList
e Any surprises?

Williams College Data Structures & Advanced Programming CSCI136 20

addLast and removelLast

Williams College Data Structures & Advanced Programming CSCI 136 21

Activity: Conceptualizing addLast

Try drawing a diagram for the addLast method in a singly linked list.
e If you finish, then do the same for a doubly linked list.
e If you finish, then do the same for removeLast.

4

Think about this for 3 minutes.
Then we'll discuss it as a group.

Time permitting
e Look at the code together.

