
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 8

● Lists of Strings
○ Binary Strings
○ Combinations

● Catalan numbers
○ Formulae
○ Inductive Proof

● Fractals
● Lab 2 — Preview

Recursion II

Data Structures & Advanced Programming 2Williams College CSCI 136

Lists of Strings

Data Structures & Advanced Programming 3Williams College CSCI 136

We’ll continue our investigation of recursive functions by printing out lists of strings.
● All binary strings of length n. There are 2n such strings.
● All (s, t)-combinations, which are binary strings with s copies of 0 and t copies of 1.

We’ll print the strings in numeric order, which is equivalent to alphabetical order (as in a dictionary).
It is also known as lexicographic order and it has a simple recursive definition (0s before 1s).

A program for listing binary strings is provided online as Binary.java.
Then we’ll write a new file Combo.java for listing combinations.

(s,t)-combinations for s = 2 and t = 3.Binary strings of length n = 3.

Lists of Strings

000
001
010
011
100
101
110
111

00111
01011
01101
01110
10011
10101
10110
11001
11010
11100

How many
(s,t)-combinations

are there?

Data Structures & Advanced Programming 4Williams College CSCI 136

0

000
001
010
011
100
101
110
111

Viewing the lexicographic order of binary strings of length n = 3 as a tree.
● The root is the empty string 𝝐 on the left.
● Each layer branches in two ways, with 0s coming before 1s.
● Paths from the root build up the prefix for the strings that appear in the list.

For example, all of the strings with prefix 10 appear to the right of the highlighted path.

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐

Data Structures & Advanced Programming 5Williams College CSCI 136

Printing out all binary strings of length n in lexicographic order using Binary.java.
In other words, all the strings starting with 0 come before those starting with 1, recursively.
● We’ll consider iterative approaches later in the course.
● What is the total for a given value of n? How can we test our code internally?

Data Structures & Advanced Programming 6Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 00 prefix = 000

prefix = 001

prefix = 01

Data Structures & Advanced Programming 7Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐

Data Structures & Advanced Programming 8Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

Data Structures & Advanced Programming 9Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

Data Structures & Advanced Programming 10Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 00

Data Structures & Advanced Programming 11Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 00 prefix = 000

Data Structures & Advanced Programming 12Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 00

Data Structures & Advanced Programming 13Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 00

prefix = 001

Data Structures & Advanced Programming 14Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 00

Data Structures & Advanced Programming 15Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

Data Structures & Advanced Programming 16Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 01

Data Structures & Advanced Programming 17Williams College CSCI 136

0

000
001
010
011
100
101
110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)

0

1

1

1

0

0

1

1

0

0

1

1
0

𝝐
prefix = 𝝐

prefix = 0

prefix = 01 etc

Data Structures & Advanced Programming 18Williams College CSCI 136

Updating Binary.java with an assertion to test the number generated.

Data Structures & Advanced Programming 19Williams College CSCI 136

1

00111
01011
01101
01110
10011
10101
10110
11001
11010
11100

Viewing the lexicographic order of (s,t)-combinations with s = 2 and t = 3 as a tree.
Notice that the nodes in this tree don’t always have two branches. Why?

0

1

1

1

0

0

0

1

1

1

1

1
0

𝝐

0
0

11
10

1
0
1

0

1

0

1

0

1
0
1

0
1

Data Structures & Advanced Programming 20Williams College CSCI 136

Using Binary.java as a basis, complete the file Combo.java.

Start by talking with your neighbor. Then we’ll discuss this as a group.
Finally, you’ll have time to write your own version.

Activity: Completing Combo.java

Discuss your ideas with a neighbor for 3 minutes.
Then you’ll have time to try writing Combo.java.

● What are your base cases?
● How many (s,t)-combinations are there?

Data Structures & Advanced Programming 21Williams College CSCI 136

Data Structures & Advanced Programming 22Williams College CSCI 136

Catalan Numbers

Data Structures & Advanced Programming 23Williams College CSCI 136

Number of Triangulations of Convex Polygons
Let C(n) be the nth Catalan number. The Catalan sequence starting with n = 0 is OEIS 108:

1, 1, 2, 5, 14, 42, 132, 429, 1430, …
Theorem: The number of different triangulations of a convex polygon with n vertices is C(n-3).

The Catalan numbers come up frequently in computer science.
● C(n) is the number of binary trees with n internal nodes.
● C(n) is the number of balanced parentheses strings of length 2n.

For example, when n = 3, the five such strings are ((())), (() ()), (()) (), () (()), () () ().

The triangulations of a heptagon with n = 7 vertices.
There are a total of C(4) = 42 such triangulations.

https://en.wikipedia.org/wiki/Catalan_number
https://oeis.org/A000108

Data Structures & Advanced Programming 24Williams College CSCI 136

A string of parentheses (e.g. “(“ and “)” is
balanced or well-formed or properly nested if the
following two properties hold.
1. There are n copies of “(“ and n copies of “)”

for some n.
2. No prefix contains more “(“ than “)”.

For example, the balanced parentheses with
n = 3 pairs are as follows:

((())) ()(()) ()()() (())() (()())

These strings are often represented in binary.
111000 101100 101010 110010 110100

Balanced parentheses of length 2n are
counted by the Catalan numbers.

These numbers also count hundreds of other
important mathematical objects.
● Binary trees with n internal nodes.
● Diagonalizations of n+3-gons.

Balanced Parentheses

Data Structures & Advanced Programming 25Williams College CSCI 136

Formulae

Data Structures & Advanced Programming 26Williams College CSCI 136

There are several different formulae for Catalan numbers.

The top formulae are closed form

Catalan Formulae

Which formula would you use?
● Are there any numeric issues?
● What about efficiency?
● Which formula is recursive?

Data Structures & Advanced Programming 27Williams College CSCI 136

Inductive Proofs

Data Structures & Advanced Programming 28Williams College CSCI 136

Consider the following situation.
● The first person in the line (i.e., the person on the left) is named Oscar.
● If the ith person in line is named Oscar, then the (i+1)st person is named Oscar.

What can we conclude? Why?
Consider variations of the above points, and what we can conclude.

…

Data Structures & Advanced Programming 29Williams College CSCI 136

Consider the sum of the first n odd numbers starting from 1.
● n = 1. The sum is 1.
● n = 2. The sum is 1 + 3 = 4.
● n = 3. The sum is 1 + 3 + 5 = 9.
● n = 4. The sum is 1 + 3 + 5 + 7 = 16.

Do you notice a pattern?
It looks like the sum is n2.

Sum of Odd Numbers

Data Structures & Advanced Programming 30Williams College CSCI 136

Let S(n) be the sum of the first n odd numbers starting from 1. That is, S(n) = 1 + 3 + … + 2n-1.
Theorem: S(n) = n2 for all n ≥ 1.
Proof: We will prove that the statement is true by mathematical induction on n.
Base Case: n = 1. In this case, S(1) = 1 is the sum of the first 1 odd number starting from 1.
The statement of the theorem claims S(1) equals 12 = 1. This is true, so the base case is true.
Inductive Assumption: Assume that the statement is true for some k where k ≥ 1.
Inductive Conclusion: Now we must prove that the statement is true for n = k + 1.
The sum of the first k+1 odd numbers starting from 1 is

S(k+1) = 1 + 3 + … + 2(k+1)-1 = S(k) + 2(k+1)-1.
By the inductive assumption, S(k) = k2. Therefore, we can substitute in this value and continue.

 = k2 + 2(k+1)-1 = k2 + 2k + 2 - 1 = k2 + 2k + 1 = (k+1)2.
Therefore, S(k+1) = (k+1)2. This proves that the statement is true for n = k + 1.
Therefore, by the principles of mathematical induction, the theorem is true for all n ≥ 1.

Proof by Induction

This is about the level of
difficulty for an inductive

proof in this course.

Data Structures & Advanced Programming 31Williams College CSCI 136

Theorem: The number of triangulations of a convex polygon with n vertices is Cn-3 for all n ≥ 3.
Counting Triangulations

The idea of the proof is illustrated above.
The top line must be part of a triangle (in orange).

Once this triangle is chosen, the problem is broken into two subproblems that are solved independently.

Establish
that we assume

truth for all
smaller cases.

Note: The following inductive proof is more
difficult than a standard CSCI 136 proof, and

is more in line with CSCI 256.

Data Structures & Advanced Programming 32Williams College CSCI 136

Theorem: The number of triangulations of a convex polygon with n vertices is Cn-2 for all n ≥ 2.
Inductive Proof

Proof: We will prove the theorem’s statement is true for all n ≥ 2 by induction on n.
● Base Case: n=2. The convex polygon is a line, which we consider to have 1 triangulation. The statement says that

there are C2-2 = C2-2 = C0 = 1 triangulations. Therefore, the statement is true for this base case.
Base Case: n=3. The convex polygon is a triangle, so it has 1 triangulation. The statement says that there are
Cn-2 = C3-2 = C1 = 1 triangulations. Therefore, the statement is true for this base case.

● Inductive Assumption: Assume that the statement is true for all n satisfying 2 ≤ n ≤ k for a specific k ≥ 3.
In other words, we assume that the theorem’s statement is true for n = 3, 4, …, k for some value of k ≥ 3.

● Inductive Conclusion: Consider the statement for n = k + 1 where k ≥ 3. The convex polygon has k+1 sides and
k+1 ≥ 4. In each triangulation of this polygon, the top line is included in a triangle in k-1 different ways. The other
two lines of this triangle divide the polygon into two convex polygons. If the left polygon has i sides where i ≥ 2,
then the right polygon has k - i sides. (Shown above: The k = 7 case. A triangle splits the k+1-sided polygon into
left and right in all possible k-1 = 6 ways.) By induction, the left polygon can be triangulated in Ci-2 ways, and the
right can be triangulated in Ck+2-i ways. The two triangulations are independent, so this gives a total of Ci-2 · Ck+2-i
triangulations when the left has i sides. Summing over all i = 2, 3, …, k-1 gives the recursive formula with the
summation shown above. Therefore, the statement is true for n = k+1.

Therefore, by the principles of mathematical induction, the statement is true for all n ≥ 2.

EstablishThis is strong
induction meaning

that we assume
truth for all

smaller cases.

Data Structures & Advanced Programming 33Williams College CSCI 136

How can you prove that the binary trees with n nodes are enumerated by the Catalan numbers?
Activity: The Number of Binary Trees

Discuss your ideas with a neighbor for 3 minutes.
Then we’ll discuss it as a group.

● What is the statement of the theorem?
● What are your base cases?
● What is your inductive assumption?
● How do you handle the inductive conclusion?

Hint: Try to do something similar to the triangulations proof.

Data Structures & Advanced Programming 34Williams College CSCI 136

Fractals

Data Structures & Advanced Programming 35Williams College CSCI 136

Fractals often have recursive definitions.
Fractals

Data Structures & Advanced Programming 36Williams College CSCI 136

Provide recursive definitions for each row.

Data Structures & Advanced Programming 37Williams College CSCI 136

Lab 2 — Preview

Data Structures & Advanced Programming 38Williams College CSCI 136

In Lab 2 you will implement a handful (or more) functions recursively.
● You will also provide test functions that help ensure that your implementation is correct.

You won’t print out the results, but rather check that no assertions are triggered.

Data Structures & Advanced Programming 39Williams College CSCI 136

A sample question from the lab.

