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Lists of Strings

We'll continue our investigation of recursive functions by printing out lists of strings.
e All binary strings of length n. There are 2" such strings.
e All (s, t)-combinations, which are binary strings with s copies of 0 and t copies of 1.

We'll print the strings in numeric order, which is equivalent to alphabetical order (as in a dictionary).
It is also known as lexicographic order and it has a simple recursive definition (0s before 1s).

00111 How many

000 01011 (s,t)-combinations

001 01101 S are there?
01110 @

010 10011

011 10101

100 10110

101 11001

110 11010

111 11100

Binary strings of length n = 3. (s,t)-combinations fors =2 and t = 3.

A program for listing binary strings is provided online as Binary. java.
Then we'll write a new file Combo . java for listing combinations.
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000
001
010
011
100
101
110
111
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Viewing the lexicographic order of binary strings of length n = 3 as a tree.

The root is the empty string € on the left.

Each layer branches in two ways, with 0s coming before 1s.

Paths from the root build up the prefix for the strings that appear in the list.

For example, all of the strings with prefix 10 appear to the right of the highlighted path.
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GNU nano 4.8 Binary.java
ublic class Binary {

public static int printAllBinary(int numBits) {
return printAllBinaryRec("", numBits);

}

protected static int printAllBinaryRec(String prefix, int remainingBits) {

int total®@, totall;

if (remainingBits <= @) {
System.out.println(prefix);
return 1;

} else {

total® = printAllBinaryRec(prefix + "@", remainingBits - 1);
totall = printAllBinaryRec(prefix + "1", remainingBits - 1);

return totald + totall;
}
}

public static void main(Stringl[] args) {
int n, total;
n = Integer.parselnt(args[@]);
total = printAllBinary(n);
System.out.println("Total: " + total);
}

CSCI136 &

[—> javac Binary.java
[=> java Binary 3
000

001

910

911

100

101

110

111

Total: 8

_>I

Printing out all binary strings of length n in lexicographic order using Binary. java.

In other words, all the strings starting with 0 come before those starting with 1, recursively.
We'll consider iterative approaches later in the course.

What is the total for a given value of n? How can we test our code internally?
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prefix = 00 prefix = 000
prefix = 0 O 000
001
prefix = € / o) & ﬂ 001 L0
€ 1 011
preﬁx=?)1 ) 100
1 < o —1 101
0] 110
1 < 1 111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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110
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When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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000
001
010
011
100
101
110
111

0 —
fix = /O<
prefix = € 1<

e& 0 —
1<1<
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When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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prefix = € / 0 &

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
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000
001
010
011
100
101
110
111
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The evolution of the call stack is shown above, along with the value of the prefix parameter.

(Add animations with class participation.)
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prefix = 0 0 < 0 000

> 1 001

refix = e & 0 010
p € 1 <

- 1 011

o —— 0 100

. < 1 101

0 110

1=—— | 11

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)



Williams College ata Structures & Advanced Programming CSCI 136 11
= 4 2

prefix = 00 prefix = 000
JENEL 0 — 0 80(1)
0
refix = € / &

m
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When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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prefix = 0 0 < 0 000

> 1 001

refix = e & 0 010
p € 1 <
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When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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0 000

. 001
orefix = € v & ﬂ 001 [0

011

€
o<° 100
. 1 101
0
1

110
111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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prefix = 0 0 < 0 000

> 1 001

refix = e & 0 010
p € 1 <
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When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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prefix = 0 0 < 0 000

> 1 001

refix = e & 0 010
p € 1 <

- 1 011
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. < 1 101
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1=—— | 11

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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0 000

prefix = 0 0 < . 001

prefix = € / 0 & < 0) 010
€ 1 011
prefix = 01 0 100

. < VUTT—— 1 101

0] 110

1= 111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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0 000

prefix = 0 0 < . 001

prefix = € / 0 & < 0) 010
€ 1 011
prefix = 01 ’EL 0 100

. < VUTT—— 1 101

0] 110

1= 111

When printAllBinary calls its, the new instance of it is put on the top of the call stack.
The evolution of the call stack is shown above, along with the value of the prefix parameter.
(Add animations with class participation.)
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GNU nano 4.8 Binary.java
mport java.lang.Math;
import structure5.x;

public class Binary {

public static int printAllBinary(int numBits) {
return printAllBinaryRec("", numBits);
}

protected static int printAllBinaryRec(String prefix, int remainingBits) {

int total®, totall;

if (remainingBits <= @) {
System.out.println(prefix);
return 1;

} else {
totald = printAllBinaryRec(prefix + "©", remainingBits - 1);
totall = printAllBinaryRec(prefix + "1", remainingBits - 1);
return total@ + totall;

}
public static void main(String[] args) {
int n, numTotal, numCorrect;

n = Integer.parselnt(args[@]);

numTotal = printAllBinary(n);
System.out.println("Total: " + numTotal);

numCorrect = (int)Math.pow(2, n);
Assert.condition(numTotal == numCorrect, "Expected: " + numCorrect);

Updating Binary. java with an assertion to test the number generated.
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00111
01011
01101
01110
10011
10101
10110
11001
11010
11100

Viewing the lexicographic order of (s,t)-combinations with s =2 and t = 3 as a tree.
Notice that the nodes in this tree don't always have two branches. Why?
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Activity: Completing Combo . java
Using Binary. java as a basis, complete the file Combo . java.
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Start by talking with your neighbor. Then we'll discuss this as a group.
Finally, you'll have time to write your own version.

Discuss your ideas with a neighbor for 3 minutes. ooeoo
Then you'll have time to try writing Combo . java. 060600
0000000
0000000

e What are your base cases? o°e°@%%%°@°o°o

— 0000CTOA00
e How many (s,t)-combinations are there?
W many (s,t)-combinat D T 8



Williams College

GNU nano 4.8 Combo.java

public class Combo {

// Print out all of the (s,t)-combinations.

public static int printAllCombo(int s, int t) {
return printAllComboRec("", s, t);

}

// The helper function that does the recursive work for printAllCombo.

// "prefix" stores the part of the string that has already been created.

// num@ and numl give the number of @'s and 1's that still need to be added.

protected static int printAllComboRec(String prefix, int num@, int numl) {
int total@, totall;
total® ‘H
totall 0;

// Base Case: There are no more @s or 1s.
if (num@ == 0 && numl == 0@) {
System.out.println(prefix);
return 1;

b

// If there are more Os, then recursively add a 0.
if (nume > @) {

total® = printAllComboRec(prefix + "8", num@-1, numl);
}

// If there are more 1s, then recursively add a 1.
if (numl > 0) {

totall = printAllComboRec(prefix + "1", num@, numl-1);
}

// Return the total of the recursive cases.
return total@® + totall;

Data Structures & Advanced Programming
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// Computes the binomial value n choose k.
public static int binom(int n, int k) {
// Base cases.

if (k == || n==k) {
return 1;
} else {

return binom(n-1, k) + binom(n-1,
}

public static void main(String[] args) {
int s, t, numTotal, numCorrect;
s = Integer.parselnt(args[0]);
t = Integer.parselnt(args[1]);

numTotal = printAllCombo(s,t);
System.out.println("Total: " + numTotal);

numCorrect = binom(s+t, t);

Assert.condition(numTotal == numCorrect,

k-1);

"Expected: " + numCorrect);

—> javac Combo.Jjava
—> java Combo 2 3
00111
01011
01101
01110
10011
10101
10110
11001
11010
11100
Total: 10
I
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Catalan Numbers
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Number of Triangulations of Convex Polygons
Let C(n) be the n'" Catalan number. The Catalan sequence starting with n = 0 is OEIS 108:

1,1,2,5,14,42,132, 429, 1430, ..
Theorem: The number of different triangulations of a convex polygon with n vertices is C(n-3).

COcLlw ©oood
VEPIYY O
PeOI”S DOLDOPE
Sececocd

The triangulations of a heptagon with n = 7 vertices.
There are a total of C(4) = 42 such triangulations.
The Catalan numbers come up frequently in computer science.
e C(n) is the number of binary trees with n internal nodes.
e C(n) is the number of balanced parentheses strings of length 2n.

For example, when n = 3, the five such stringsare ((())), (()()), (O)) (), OC(O)), O) () ().


https://en.wikipedia.org/wiki/Catalan_number
https://oeis.org/A000108
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Balanced Parentheses

A string of parentheses (e.g. “(“and *)" is Balanced parentheses of length 2n are
balanced or well-formed or properly nested if the counted by the Catalan numbers.
following two properties hold. 1 [2n (2n)! n+k
. “rn . oy En = ( ) = - H forn > 0.
1. There are n copies of “(“ and n copies of “) n+1l\n +1)In! 25
for some n.
2. No prefix contains more “(“ than “)". These numbers also count hundreds of other

, important mathematical objects.
For example, the balanced parentheses with P )

_ e Binary trees with n internal nodes.
n = 3 pairs are as follows:

©) 00 000 O (OO *  Diagonalizations of n+3-gons.

These strings are often represented in binary. Z@ éflt éﬁ % QA

111000 101100 1070170 110010 110100 ®@@®@@

0 QS
N O D
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Formulae
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Catalan Formulae

There are several different formulae for Catalan numbers.

. — 1 (2n) _ (2n)! ~n+k

— - forn > 0.
n+1\n (n+1)!n! :

E
|
o

Co=1 and (.1 = ZCZ-Cn_i forn >0
i=0

The top formulae are closed form

Which formula would you use?

e Are there any numeric issues?
e What about efficiency?
e Which formulais recursive?
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Inductive Proofs
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Consider the following situation.
e The first person in the line (i.e., the person on the left) is named Oscar.
e If the ith person in line is named Oscar, then the (i+1)st person is named Oscar.

What can we conclude? Why?
Consider variations of the above points, and what we can conclude.



Sum of 0dd Numbers
Consider the sum of the first n odd numbers starting from 1.
e n=1. Thesumis1.

e n=2 Thesumis1+3=4.

e n=3. Thesumis1+3+5=9,

e n=4 Thesumis1+3+5+7=16.

CSCI 136 29

Do you notice a pattern?
It looks like the sum is n?.
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Proof by Induction
Let S(n) be the sum of the first n odd numbers starting from 1. Thatis, S(n) =1+ 3 + .. + 2n-1.

Theorem: S(n) =n”foralln>1.
Proof: We will prove that the statement is true by mathematical induction on n.

Base Case: n=1. Inthis case, S(1) = 1 is the sum of the first 1 odd number starting from 1.
The statement of the theorem claims S(1) equals 12 = 1. This is true, so the base case is true.

Inductive Assumption: Assume that the statement is true for some k where k > 1. 0.

Inductive Conclusion: Now we must prove that the statement is true forn =k + 1. S
The sum of the first k+1 odd numbers starting from 1 is difficulty for an inductive

S(kt1) =143+ . + 2(k+1)-1 = S(K) + 2(k+1)-1. PO cBies
By the inductive assumption, S(k) = k%. Therefore, we can substitute in this value and continue.
=k2+2(k+1)-1= k?+2k+2-1=k*+ 2k + 1 = (k+1)%
Therefore, S(k+1) = (k+1)2. This proves that the statement is true forn =k + 1.
Therefore, by the principles of mathematical induction, the theorem is true forall n > 1.
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Counting Triangulations
Theorem: The number of triangulations of a convex polygon with n vertices is C__, foralln = 3.

6 1 6 1 6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2 5 2 5 2
4 3 4 3 4 k ) 3 4 3 4 3

3 4

6 1 6 1 6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3 4 3 4 3

The idea of the proof is illustrated above.

The top line must be part of a triangle (in orange).
Once this triangle is chosen, the problem is broken into two subproblems that are solved independently.

Cy=1
el = ZCiCn_i forn >0
i=0

Note: The following inductive proof is more
® difficult than a standard CSCI 136 proof, and

is more in line with CSCI 256.
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Inductive Proof
Theorem: The number of triangulations of a convex polygon with n vertices is C__ foralln = 2.

6 1 6 1 6 1 6 | C():].
n

5 2 5 2 5 2 5 n—i—l ZC,Cn_z fOI‘TLZO
1=0

4 3 4 3 4 3 4

Proof: We will prove the theorem’s statement is true for all n 2 2 by mductlon on n.
e Base Case:n= 2 The convex polygon is a line, which we consider to have 1 triangulation. The statement says that
there are C, =C,=1 trlangulatlons Therefore, the statement is true for this base case.
Base Case: n=3. Tﬁe convex polygon is a triangle, so it has 1 triangulation. The statement says that there are
C_,=C,,=C, = 1triangulations. Therefore, the statement is true for this base case.
e Inductive i‘ssumptlon Assume that the statement is true for all n satisfying 2 < n < k for a specific k > 3.
In other words, we assume that the theorem'’s statement is true for n = 3, 4, ..., k for some value of k > 3.
e Inductive Conclusion: Consider the statement forn =k + 1 where k > 3. The convex polygon has k+1 sides and
k+1 > 4. In each triangulation of this polygon, the top line is included in a triangle in k-1 different ways. The other
two lines of this triangle divide the polygon into two convex polygons. If the left polygon has i sides where i > 2,
then the right polygon has k - i sides. (Shown above: The k = 7 case. A splits the k+1-sided polygon into
left and right in all possible k-1 = 6 ways.) By induction, the left polygon can be triangulated in C._, ways, and the
right can be triangulated in C, _, . ways. The two triangulations are independent, so this gives a total of C. 2 C
triangulations when the left has i sides. Summing over all i = 2, 3, ..., k-1 gives the recursive formula with the
summation shown above. Therefore, the statement is true for n = k+1
Therefore, by the principles of mathematical induction, the statement is true for all n > 2.
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Activity: The Number of Binary Trees
How can you prove that the binary trees with n nodes are enumerated by the Catalan numbers?

y |
|

Discuss your ideas with a neighbor for 3 minutes.

Then we'll discuss it as a group.

What is the statement of the theorem?

What are your base cases?

What is your inductive assumption?

How do you handle the inductive conclusion?

Hint: Try to do something similar to the triangulations proof.
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Fractals
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Fractals
Fractals often have recursive definitions.

Data Structures & Advanced Programming

o frac-tal
['fraktal/

MATHEMATICS

noun
a curve or geometric figure, each part of which has the same statistical character as the whole.
Fractals are useful in modeling structures (such as eroded coastlines or snowflakes) in which

similar patterns recur at progressively smaller scales, and in describing partly random or chaotic
phenomena such as crystal growth, fluid turbulence, and galaxy formation.

adjective

relating to or of the nature of a fractal or fractals.
"fractal geometry"

Definitions from Oxford Languages Feedback
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Provide recursive definitions for each row.
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Lab 2 — Preview
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Computer Science CS136 (Fall 2021)
Duane Bailey 6 Aaron Williams
Laboratory 2

Recursion

Objective. Practice solving problems using recursion.

Discussion. This week’s lab is structured as several small problems that can be solved in isolation.
Recursion can be a difficult concept to master and one that is worth concentration on separately before
using it in large programs. Recursive solutions can often be formulated in just a few concise, elegant lines,
but they can be very subtle and hard to get right.

We would like you to write this week’s problem solutions using recursion. Take time to figure out
how each problem is self-referential in nature and how you could formulate the solution to the problem if
you already had the solution to a smaller, simpler version of the problem. You will often need to have faith
that your solution will ultimately be correct, even early in the design of the code. Remember, recursion
requires three things: one or more base cases, a reduction to a subproblem, and a little progress that glues
the solutions to the subproblem together. If you learn to think recursively, the solutions to many problems
will seem very intuitive.

In Lab 2 you will implement a handful (or more) functions recursively.

You will also provide test functions that help ensure that your implementation is correct.
You won't print out the results, but rather check that no assertions are triggered.



CSCI 136 39

Williams College Data Structures & Advanced Programming

4. Write a method, tetrahedral(n), that computes the number of cannonballs that are stacked in a
tetrahedral pyramid with n layers. The top has one cannonball, which rests on a layer with 1+2 =3
cannonballs. This layer sits atop a layer with 14+2+3 = 6 cannonballs. The pattern continues. Here
are some example values:

method call result
tetrahedral (0) 0
tetrahedral (1) 1
tetrahedral (2) 4
tetrahedral (3) 10

A sample question from the lab.



