CSCI136 1

Lecture 7 e Binary Search

e lterative Implementation: searchi
Recursion 1 e Recursive Implementation: search?2

Williams College

Binary Search
At the end of Lecture 6, we ran a binary search.

A number between 1 and 100 was chosen.
The initial guess was 50, which was too low.
The next guess was 75, which was too low.
The next guess was 87, which was too high.
The next guess was 81, which was too high.
The next guess was 84, which was too high.
The next guess was 82, which is correct.

At each step, there is a range of indices that could
contain the value, and we guess the middle of the range.

The same approach works whenever the data array is
sorted. Furthermore, it allows use to either find a
particular value, or deduce that it is not in the array.

In this lecture we'll implement binarv search in two wavs.

CSCI136 2

10

11

12113

14

15

16

17

18

19

20

21

22123

24

29

26

27

28

29

30

31

32133

34

35

36

37

38

39

40

41

42 |43

44

45

46

47

48

49

50

51

92|93

54

95

56

o7

58

59

60

61

62 |63

64

65

66

6/

68

69

70

/1

2|73

74

5

76

I

/8

79

80

81

82| 83

84

85

86

87

88

89

90

91

92|93

94

95

96

97

98

chantedLe

100

Running binary searchon 1 — 100
for the secret number 82.

Data Structures & Advanced Programming CSCI136 3

Williams College

Iteration vs Recursion
In Computer Science term iteration is most closely associated with doing one thing at a time.

The most commonly associated control structure is a loop.

The term recursion is most closely associated with splitting a task into one more more subtasks.
The most commonly associated control structure is a function that calls itself.

o iteration < re-cur-ssion
/,ida'raSH(a)n/
Ira’kerZHan/

noun

the repetition of a process or utterance. noun MATHEMATICS - LINGUISTICS

¢ repetition of a mathematical or computational procedure applied to the result of a previous . . N
application, typically as a means of obtaining successively closer approximations to the solution of a the repeated application of a recursive procedure or definition.
problem. ¢ arecursive definition.

e anew version of a piece of computer hardware or software. plural noun: recursions

plural noun: iterations

Oxford Dictionary’s definition. Oxford Dictionary’s definition.
(Is this a joke?)

Some problems can naturally be solved using iteration or recursion.
When recursion is possible, it is often (a) cleaner, and (b) more difficult conceptually (at first).

Williams College

GNU nano 4.8 Iterative.java GNU nano 4.8 Recursive.java

// Source: https://www.guru99.com/fibonacci-series-java.html
// Using For Loop
public class FibonacciExample {
public static void main(String[] args)
{
// Set it to the number of elements you want in the Fihd
int maxNumber = 10;
int previousNumber = 0;
int nextNumber = 1;
System.out.print("Fibonacci Series of "+maxNumber+" numk
for (int i = 1; 1 <= maxNumber; ++i)
{
System.out.print(previousNumber+" ");
/* On each iteration, we are assigning second numbey
% to the first number and assigning the sum of last
* numbers to the second number
*/
int sum = previousNumber + nextNumber;
previousNumber = nextNumber;
nextNumber = sum;
}
}
}

Data Structures & Advanced Programming

// Source: https://www.guru99.com/fibonacci-series-java.html

// Using Recursion
public class FibonacciCalc{
public static int fibonacciRecursion(int n){

CSCI136 4

// Base Cases.)
if(n == 0){ Isthen == 2 base case needed?
} return 0; What aboutthen == 1 base case?)
if(n =1 || n==2){

return 1;
}

// Add the previous two numbers.

return fibonacciRecursion(n-2) + fibonacciRecursion(n-1);

}

public static void main(String args[]1) {
int maxNumber = 10;

System.out.print("Fibonacci Series of "+maxNumber+" numbers: ");

for(int i = @; i < maxNumber; i++){
System.out.print(fibonacciRecursion(i) +" ");

}
o}
© Q0 ——<T e
}
O W

The Fibonacci numbers: 0,1, 1,2, 3,5, 8,13, 21, ..
Implemented iteratively (left) and recursively (right) [

Could this be avoided?

hich implementation is more efficient?
What does the recursive function recalculate?

https://www.guru99.com/fibonacci-series-java.html

Williams College

GNU nano 4.8
mport java.util.Random;

BinarySearch.java

public class BinarySearch {

// Codes for printing color in the console.

// Not supported in every shell.

public static final String ANSI_RESET = "\u@eiB[em";
public static final String ANSI_RED = "\u@@iB[31m";

// Searches for value f in array A and returns true or false.

// Implemented using iteration.
public static Boolean searchl(int[] a, int f) {
return false;

}

// Searches for value f in array A and returns true or false.

// Implemented using recursion.
public static Boolean search2(int[] a, int f) {
return false;

}

public static void main(Stringl[] args) {
final int CAPACITY = 50;
int[] array;
int value, target;
Random r;
Boolean foundl, found2;

// Create array and fill it with random sorted positive ints.
// Each successive value is included with probability 50%.

r = new Random();

array = new int[CAPACITY];

value = 0;

for (int i = @; i < CAPACITY; i++) {
value += r.nextInt(2) + 1; // Increment by 1 or 2.
array[i] = value;

| NeK |

[~

// Create a random target between 1 and array's max value.
target = r.nextInt(value); // value is array's max value.

// Print the array and highlight the target if present.
// ANSI_RED and ANSI_RESET may not work in your terminal.
for (int 1 = @; i < CAPACITY; i++) {
if (array[il] == target) {
System.out.print (ANSI_RED + array[il] + ANSI_RESET);
} else {
System.out.print(array[il);
}
System.out.print(" ");
}
System.out.println("");

// Binary search for the target.[]

// We should expect to find it 56% of the time.
foundl = searchl(array, target);

found2 search2(array, target);

// Print out the results of the searches.
System.out.printf("searchl for %d: %b%n", target, foundl);
System.out.printf("search2 for %d: %b%n", target, found2);

CSCI136 5

Starter Code for BinarySearch. java.
We will implement searchi and search2 using iteration and recursion, respectively.
Note: Updated ~/ . nanorc will be posted after today’s lecture.

40 41 43 44 46 48 50 52 53 55 57 58 59 60 61 63 64 66 68 69
searchl for 18: false

search2 for 18: false

- l

[-> java BinarySearch
2 45689 11 13 14 15 16

3 20 21 22 24 25 27 28 30 32 34 35 36 37 38 39
71 73 75

Williams College Data Structures & Advanced Programming
= 4 2

Iterative Implementation

Williams College Data Structures & Advanced Programming CSCI136 7

Discussion: Binary Search 1 — Iterative Approach

Discuss how to implement the function searchi, which is our iterative approach to binary search
inBinarySearch. java.

Start by talking with your neighbor. Then we'll discuss this as a group.
Finally, you'll have time to write your own version.

s A
T g

Discuss your ideas with a neighbor for 3 minutes.
Then you'll have time to try writing searchi.

Which variables will you use?

When is the search finished?

How does division work in Java? (Does it round up or down, or give a floating point number?)
Can you avoid off-by-one errors? (There is some tricky mathematics.)

Williams College Data Structures & Advanced Programming
2 g g

Williams College

Data Structures & Advanced Programming

// Searches for value f in array A and returns true or false.
// Implemented using iteration.
public static Boolean searchil(int[] a, int f) {
int left, right, middle;
left = 0;
right = a.length - 1;
while (left <= right) {
middle = left + (right - left)/2;
if (almiddle] == f) {
return true;
} else if (f < almiddlel) {
left = left;
right = middle-1;
} else {
left = middle+1;
right = right;

}
}
return false;

¥

Finished searchi.

CSCI136 9

Williams College Data Structures & Advanced Programming
= 4 2

Recursive Implementation

Williams College Data Structures & Advanced Programming CSCI136 11

Discussion: Binary Search 2 — Recursive Approach

Discuss how to implement the function searchz2, which is our recursive approach to binary
searchin BinarySearch. java.

Start by talking with your neighbor. Then we'll discuss this as a group.
Finally, you'll have time to write your own version.

LA B
’ A

gu 2

Discuss your ideas with a neighbor for 3 minutes.
Then you'll have time to try writing search2.

Which variables will you use?

When is the search finished (i.e., what are the base cases)?

Do you want to change the function signature of search2? Why?

Is the recursive approach faster or slower? How much memory does it use?

Williams College Data Structures & Advanced Programming CSCI 136 12

Williams College

Data Structures & Advanced Programming

// Searches for value f in array A and returns true or false.
// Implemented using recursion.
public static Boolean search2(int[] a, int f) {

return search2rec(a, f, @0, a.length-1);

¥

// This function is used by search2.

private static Boolean search2rec(int[] a, int f, int left, int right) {

int middle;

// Base case: The range is empty.
if (left > right) return false;

// Check the middle fo the range and recurse as needed.
middle = left + (right - left)/2;
if (almiddle] == f) {
return true;
} else if (f < almiddlel]) {
return search2rec(a, f, left, middle - 1);
} else {
return search2rec(a, f, middle + 1, right);

¥

Finished search2 which is a stub for search2rec.

CSCI136 13

