CSCI136 1

Williams College

Lecture 6
Complexity

Lab 1 — Preview
Time-Complexity

Big-Oh

Addendum: Arrays vs Linked Lists

Williams College Data Structures & Advanced Programming CSCI136 2

Preview of Lab 1

Williams College Data Structures & Advanced Programming

Computer Science CS136 (Fall 2021)
Duane Bailey & Aaron Williams
Laboratory 1

The Silver Dollar Game

Objective. To implement a simple game using Vectors or arrays.

Discussion. The Silver Dollar Game is played between two players. An arbitrarily long strip of paper is
marked off into squares:

THE “COIN STRIP” USED IN THE SILVER DOLLAR GAME.

The game begins by placing silver dollars in a few of the squares. Each square holds at most one coin.
Interesting games begin with some pairs of coins separated by one or more empty squares.

Ol 1do O ¢

A POSSIBLE STARTING POSITION FOR THE SILVER DOLLAR GAME.

The goal is to move all the n coins to the leftmost n squares of the paper. This is accomplished by
players alternately moving a single coin, constrained by the following rules:

1. Coins move only to the left.
2. No coin may pass another.
3. No square may hold more than one coin.

If multiple people are playing, then the last person to move is the winner.

This week we will be thinking about how to represent the “coin strip” at the center of this challenge.
There are many choices of how we might represent the state of the coin strip; your job is to identify one
that seems appealing and make it the basis of your implementation. When your implementation is finished,
you can test it using two existing applications—a solitare “puzzle”, and a two-person “game”.

The Coin Strip Lab involves designing and implementing a data structure for the Silver Dollar Game.

Williams College Data Structures & Advanced Programming CSCI136 4

public class Game . . .
{ public class CoinStrip

public static void main(String[] args) {

{

CoinStrip s = new CoinStrip();

Scanner input = new Scanner(System.in);

String player@, playerl;

if (args.length == 2) {

player@ = args([0];

playerl = args([1];

Hielselt ; public CoinStrip()
playerd = "Alice";
playerl = "Bob"; {

i

boolean player@Playing = true; b

System.out.println(s);
while (!'s.gameOver()) {

if (player@Playing) {

System.out.println(player® + ": enter a coin number and a distance."); ¢ ; ;
M 2 (Blos i public int numCoins()

} else {
System.out.println(playerl + ": enter a coin number and a distance.");
} {
boolean valid = true;
do {~ . return 0;
int coin = input.nextInt();
= input.nextInt(); b

int dist

Code for playing a 1-Player Puzzle or a 2-Player Game is given to you (e.g. Game . java on left).
But it won't run until you design and implement the CoinStrip data structure (start code on right).

Williams College Data Structures & Advanced Programming CSCI136 5

Time-Complexity

Williams College Data Structures & Advanced Programming CSCI136_ 6
Live Coding: Time Complexity
We'll discuss the basics of time counting during the live coding
of the Count . java file.
e What if we change the static values CAPACITY and/or MAXVALUE?
What if we make CAPACITY ten times larger? How much longer will the program run?
e Does second implementation of the loop save a significant amount of time?
What exactly would we mean by significant?
e If // do something was simple (e.g., print(i)), then how much would the
if statement contribute to the overall run-time? What if it was more complicated?
e How much time and space does new int[CAPACITY] take?

Williams College

Data Structures & Advanced Programming

GNU nano 4.8 Count.java

import java.util.Random;

public class Count {
public static void main(String[] args) {
final int CAPACITY = 100;
final int MAXVALUE = 1000;

int[] A = new int[CAPACITY];

Random rand = new Random();

(int 1 = @; 1 < CAPACITY; i++) {
A[i]l = rand.nextInt(MAXVALUE);

Starting code for Count . java.

CSCI136 7

Williams College

Data Structures & Advanced Programming

CSCI136 8

'Import java.util.Random;

public class Count {
public static void main(Stringl[] args) {
final int CAPACITY 100;
final int MAXVALUE 1000;

int[] A = new int[CAPACITY];

The loop runs CAPACITY times.
Each iteration takes the same time.

Random rand = new Random();

(int i = @; i < CAPACITY; i++) {
A[i]l = rand.nextInt(MAXVALUE);

}
(int 1 = @; i < CAPACITY; i++) {
(int j = ©; j < CAPACITY; j++) {
(1 '= j && A[i]l == A[j]) {
System.out.printf(, 1,3,A0i]1);
}
}
}

System.out.println("");

(int i = @; i < CAPACITY-1; i++) {

(int j = i+1; j < CAPACITY; j++) {
(i 1= 3 && A[i]l == A[j]) {
System.out.printf(

¢ i,9,A011);

}
}
System.out.println("");

Finished Count. java.

The outer loop runs CAPACITY times.
On each iteration, the inner loop runs
CAPACITY times. So the if statement

runs CAPACITY*CAPACITY times.

~
Intuitively, this runs about half as long as the previous one
since it only generates i and j pairswithi < j.

Alternatively, let’s add the time for each iteration of the i loop.
The first iteration (i.e., 1 = 0) runs CAPACITY-1 times.
The second (i.e.,, i = 1)runs CAPACITY-2 times, etc.

Recall that 14+2+..4n =n(n+1)/2.
So the if statement runs (CAPACITY-1)*CAPACITY/2
times in total.

A _

// How much time does this statement take?
it (rand.nextInt(1) == 2) {
for (int 1 = @; 1 < CAPACITY; i++) {

// do something

ik
¥
else {
for (int 1 = @; i < MAXVALUE; i++) {
// do something
}
k

// How much time did the whole program take?
// How much space did the whole program take?

Finished Count . java.

Williams College

Run-Time versus Time-Complexity
Run-Time

The time that a program takes when it is run.
Measured in a time unit (e.g. milliseconds, days).

Consider the unix command time.

We can estimate the run-time using basic rules.

How long does each instruction take? Often
we estimate each to be one unit of time.
Sequential instructions are added together.

A loop is estimated by multiplying the number
of loops by the time taken for each loop.

Take the maximum of the two branches in an
if-statement.

The amount of time is often parameterized based
on certain values.

Time-Complexity
A more abstract measurement of the time
complexity.

The focus is on how much time is taken

relative to the size of the problem, or more

specifically, the size of the input denoted n.
e Larger problems take longer to solve.

We use big-oh to provide more useful and
concise measurements, and the analysis may
involve simple proofs.

Time-complexity is often pessimistic (i.e., it
considers worst-case performance).

Uses the same principles as run-time
counting.

CSCI 136 10

Williams College Data Structures & Advanced Programming CSCI 136 11

Big-Oh

Williams College Data Structures & Advanced Programming
2 g g

5 7
/// /n! / n log(n)
/ / / n
4 / /
no 1
/
3 /! / /
/
2"/ // n2 / 7
2 / / 4 // Sqrt,(??—‘ |
o 1 A N
/ /7% ‘__/_z—» r
a A log(n)
/ o
~ (l‘.-’
0o K Z Z
0 1 2 3 4 5

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

From the CSCI 136 textbook Java Structures.

100

80

60

40

20

Figure 5.3 Long-range trends of common curves.

Compare with Figure 5.2.

We are interested in how the run-time of an algorithm f(n) grows as n — co.

CSCI 136 13

A g9(n) A A

g(n)

f(n)
f(n) g(n)

" = f(n)

n n n

Figure 5.1 Examples of functions, f(n), that are O(g(n)).

From the CSCI 136 textbook Java Structures.
We bound the run-time f(n) using a simpler function g(n).

CSCI 136 14

Big-Oh
Exact runtime formulae are overly complicated.
We instead use big-oh notation as an estimate.
Big-oh is an upper bound that does two things:
e Remove lower order (ie slower growing) terms.
e Remove constant factors.

When measuring time we count each individual

simple step counts as 1.
Use addition for consecutive operations.
Use multiplication for loops.

It's more accurate to refer to O(f(n)) as a set, e.g.
10n% + 3n € 0(n?) or 10n? + 3n € 0(n®).

Data Structures & Advanced Programming

Definition 5.1 A function f(n) is O(g(n)) (read “order g” or “big-O of g”), if and
only if there exist two positive constants, ¢ and ny, such that

If(n)] < e-g(n)

for all n > ny.

DEFINITION 7.2

Let f and g be functions f, g: N'— R™. Say that f(n) = O(g(n))
if positive integers c and n exist such that for every integer n > ny,

f(n) < cg(n).

Asymptotic Upper Bounds Let T(n) be a function—say, the worst-case run-
ning time of a certain algorithm on an input of size n. (We will assume that
all the functions we talk about here take nonnegative values.) Given another
function f(n), we say that T'(n) is O(f(n)) (read as “T(n) is order f(n)”) if, for
sufficiently large n, the function T'(n) is bounded above by a constant multiple
of f(n). We will also sometimes write this as T'(n) = O(f(n)). More precisely,
T(n) is O(f(n)) if there exist constants ¢ > 0 and n, > 0 so that for all n > n,,
we have T'(n) < c- f(n). In this case, we will say that T is asymptotically upper-
bounded by f. It is important to note that this definition requires a constant c

to exist that works for all n; in particular, ¢ cannot depend on n.

Formal definitions of big-oh from various sources.

Williams College

Data Structures & Advanced Programming

Big-O Complexity

1000 /
900

800 /
700

—0(1)

Oflogn)

Operations

e /

|
o) N i

0 -+ T ' T ' ' ' '
0 10 20 30 40 50 60 70 80

Elements

Of(n)
=== (0(nlogn)
0N 2)

w0 27n)

O(n!)

Growth of various functions (scale: n = 0 - 100).
e Notice that n? and 2" don't look too different on this scale.

CSCI 136

15

Williams College

Data Structures & Advanced Programming

Algorithm Time Complexity

120 A

100 -

80 A

60

Time, t

20 -

—— O(log(n))
— Of{n}
—— 0O(nlog(n))
— 0(n"2)
— 0(2"n)
— 0(n!)

O(1)

0 200 400 600 800 1000

Number of Elements, n

Growth of various functions (scale: n =0 - 1000).

e Notice that n? and 2" are starting to look very different on this scale.

CSCI 136 16

Williams College

Variants of Big-Oh

Data Structures & Advanced Programming

We also use the following variants of Big-Oh.

Bound

<

<

v

Notation

O

®

C

Variants of big-oh

Name
big oh
little oh
big omega
little omega

big theta

CSCI 136 17

For example, we'll argue that comparison-based sorting takes Q(n log(n))-time later in the course.

Williams College Data Structures & Advanced Programming CSCI 136 18

Examples

Williams College

Polynomials

Polynomials have the formc, + ¢, n+c, n’+.. + C, nk

where the c's are constant and k is a constant.
Note: A constant function is a (special type of) polynomial function.

Polynomials have excellent closure properties.
If p(x) and q(x) are both polynomials:
- p(x) is a polynomial for any constant c.

p() + q(x) is a polynomial.

p(x) - q(x) is a polynomial.
p(q(x)) is a polynomial (known as composition).

The last point implies that you can call a
polynomial-time subroutine a polynomial number of

times, and the resulting run-time will still be polynomial.

Note: Terms of the form ¢, n*log(n) are polylogarithmic
with n loa(n) aricina freauentlv (e a merae <ort)

CSCI 136

1

2

3

4

5

6

/

8

9

10

11

12

18

14

15

16

17

18

19

20

21

22

23

24

29

26

2(

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

o0

51

o2

53

54

95

56

o7

58

59

60

61

62

63

64

65

66

6/

68

69

70

/1

(2

/3

74

%9

76

I

/8

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

hantedLe

100

Answers: n(n-1) and n(n-1)/2.

How many ordered pairs of distinct values?
How many unordered pairs of distinct values?

Williams College

Exponential Functions

Exponential terms have the form ¢ - b ¢ where e(n)
is some polynomial in n. When comparing these to
polynomials, the variable n appears in the exponent
rather than in the base.

Notes:
e The base of the exponent is important. For
example, 3" grows much faster than 2" or 2'%".
o If e(n)is logarithmic, then ¢ - b ™ js
polynomial.
e If e(n) is exponential, then ¢ - b ¢™ is doubly
exponential.

CSCI 136 20

2

3

4

5

6

/

8

9

10

11

12

18

14

15

16

17

18

19

20

21

22

23

24

29

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

o0

i

o2

53

54

95

56

o7

58

59

60

61

62

63

64

65

66

6/

68

69

70

/1

(2

3

74

o

76

I

/8

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

hantedLe

100

How many subsets of numbers are there?
How many permutations of numbers?
Answers: 2" and n!

Williams College

Logarithms

Logarithms commonly arise in computer science
when we repeatedly halve the search space.

(In some cases the halving is obtained using the help
of a data structure.)

Notes:
e log log(x) is not the same as log?(x).
e By default the base is assumed to be 2.
e We typically don't care about the base of the
logarithm. This is due to the change of base
formula which results in a constant factor.

log, n

log. n=
ga logb a

CSCI 136 21

2

3

4

5

6

/

8

9

10

11

12

18

14

15

16

17

18

19

20

21

22

23

24

29

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

o0

i

o2

53

54

95

56

o7

58

59

60

61

62

63

64

65

66

6/

68

69

70

/1

(2

3

74

o

76

I

/8

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

chantedLe

100

Guess my number between 1 -100.
| will tell you lower or higher.

How many guesses?

Williams College Data Structures & Advanced Programming
2 g g

Constant Functions

There are relatively few problems that can be
answered in constant time. One example is below.

FIRST

Input: A non-empty list of integers L, and an integer k.

Output: yes, if the first integer in L is k. Otherwise, no.

Constant functions also arise when analyzing problems
whose input/instance size is bounded.

For example, the number of humans is n < 8,000,000,000
which is constant, so sorting human names can be done
in constant-time. In particular, n log n = 32,000,000,000.

This limitation is inherent to the way that we analyze
algorithms. Claiming constant-time for every real-world
instance is a great way to annoy computer scientists!

Top baby names in 2018

Number of babies given name

CSCI 136 22

Boys
Jack
Daniel 154
Oliver 151 Girls
Harry Grace
Thomas Emily
Leo 137 Olivia
Source: Northern Ireland Statistics Sophie
Ella
Amelia
Isla
Anna
Lily
Lucy
|earch Agency

Popular names for new humans.

6 Sawyer

7 Peyton

10 Hayden

https://nameberry.com/unisex-names
https://nameberry.com/unisex-names

Williams College Data Structures & Advanced Programming

Addendum: Arrays vs Linked Lists

Villiams College Data Structures & Advanced Programming

Sequential Data

There are two fundamental ways in which sequential data is stored in a computer.

1. Arrays. The values are positioned sequentially within memory.
o Pros: Fast access based on position.
o Cons: Homogeneous (data points have same size); fixed predetermined size; slow insert / delete.

2. Linked Lists. The values are chained together using pointers.

o Pros: Easy to resize; fast insert / delete.

o Cons. Slow access based on position; node types.

Array location

i-th element position ?
calculated as :
SizeOf(element)*i E

Linked lists have variations including (a) doubly Ilinked, (b) circularly linked, (c) tail pointers.

Linked List First Node

X

We'll look at these in more detail later in the course.

3

2

7

/

s

v

CSCI 136 24

