
Data Structures & Advanced Programming 1Williams College CSCI 136

Lecture 6
● Lab 1 — Preview
● Time-Complexity
● Big-Oh
● Addendum: Arrays vs Linked Lists

Complexity

Data Structures & Advanced Programming 2Williams College CSCI 136

Preview of Lab 1

Data Structures & Advanced Programming 3Williams College CSCI 136

The Coin Strip Lab involves designing and implementing a data structure for the Silver Dollar Game.

Data Structures & Advanced Programming 4Williams College CSCI 136

Code for playing a 1-Player Puzzle or a 2-Player Game is given to you (e.g. Game.java on left).
But it won’t run until you design and implement the CoinStrip data structure (start code on right).

Data Structures & Advanced Programming 5Williams College CSCI 136

Time-Complexity

Data Structures & Advanced Programming 6Williams College CSCI 136

Live Coding: Time Complexity
We’ll discuss the basics of time counting during the live coding
of the Count.java file.
● What if we change the static values CAPACITY and/or MAXVALUE?

What if we make CAPACITY ten times larger? How much longer will the program run?
● Does second implementation of the loop save a significant amount of time?

What exactly would we mean by significant?
● If // do something was simple (e.g., print(i)), then how much would the

if statement contribute to the overall run-time? What if it was more complicated?
● How much time and space does new int[CAPACITY] take?

Data Structures & Advanced Programming 7Williams College CSCI 136

Starting code for Count.java.

Data Structures & Advanced Programming 8Williams College CSCI 136

Finished Count.java.

The loop runs CAPACITY times.
Each iteration takes the same time.

The outer loop runs CAPACITY times.
On each iteration, the inner loop runs

CAPACITY times. So the if statement
runs CAPACITY*CAPACITY times.

Intuitively, this runs about half as long as the previous one
since it only generates i and j pairs with i < j.

Alternatively, let’s add the time for each iteration of the i loop.
The first iteration (i.e., i = 0) runs CAPACITY-1 times.
The second (i.e., i = 1) runs CAPACITY-2 times, etc.

Recall that 1+2+...+n = n(n+1)/2.
So the if statement runs (CAPACITY-1)*CAPACITY/2

times in total.

Data Structures & Advanced Programming 9Williams College CSCI 136

Finished Count.java.

This will be true 50% of the time.

In this branch,
the loop runs CAPACITY times.

In this branch,
the loop runs MAXVALUE times.

A pessimistic view would take the
maximum of the two branches:

max(CAPACITY, MAXVALUE).

Data Structures & Advanced Programming 10Williams College CSCI 136

Run-Time
The time that a program takes when it is run.
Measured in a time unit (e.g. milliseconds, days).
● Consider the unix command time.

We can estimate the run-time using basic rules.
● How long does each instruction take? Often

we estimate each to be one unit of time.
● Sequential instructions are added together.
● A loop is estimated by multiplying the number

of loops by the time taken for each loop.
● Take the maximum of the two branches in an

if-statement.

The amount of time is often parameterized based
on certain values.

Time-Complexity
A more abstract measurement of the time
complexity.

The focus is on how much time is taken
relative to the size of the problem, or more
specifically, the size of the input denoted n.
● Larger problems take longer to solve.

We use big-oh to provide more useful and
concise measurements, and the analysis may
involve simple proofs.

Time-complexity is often pessimistic (i.e., it
considers worst-case performance).

Uses the same principles as run-time
counting.

Run-Time versus Time-Complexity

Data Structures & Advanced Programming 11Williams College CSCI 136

Big-Oh

Data Structures & Advanced Programming 12Williams College CSCI 136

From the CSCI 136 textbook Java Structures.
We are interested in how the run-time of an algorithm f(n) grows as n → ∞.

Data Structures & Advanced Programming 13Williams College CSCI 136

From the CSCI 136 textbook Java Structures.
We bound the run-time f(n) using a simpler function g(n).

Data Structures & Advanced Programming 14Williams College CSCI 136

Exact runtime formulae are overly complicated.
We instead use big-oh notation as an estimate.
Big-oh is an upper bound that does two things:
● Remove lower order (ie slower growing) terms.
● Remove constant factors.

Formal definitions of big-oh from various sources.

When measuring time we count each individual
simple step counts as 1.
● Use addition for consecutive operations.
● Use multiplication for loops.

It’s more accurate to refer to O(f(n)) as a set, e.g.
10n2 + 3n ∈ O(n2) or 10n2 + 3n ∈ O(n3).

Big-Oh

Data Structures & Advanced Programming 15Williams College CSCI 136

Growth of various functions (scale: n = 0 – 100).
● Notice that n2 and 2n don’t look too different on this scale.

Data Structures & Advanced Programming 16Williams College CSCI 136

Growth of various functions (scale: n = 0 – 1000).
● Notice that n2 and 2n are starting to look very different on this scale.

Data Structures & Advanced Programming 17Williams College CSCI 136

We also use the following variants of Big-Oh.
Variants of Big-Oh

For example, we’ll argue that comparison-based sorting takes Ω(n log(n))-time later in the course.

Variants of big-oh

Bound Notation Name

≤ O big oh

< o little oh

≥ Ω big omega

> ⍵ little omega

= Θ big theta

Data Structures & Advanced Programming 18Williams College CSCI 136

Examples

Data Structures & Advanced Programming 19Williams College CSCI 136

How many ordered pairs of distinct values?
How many unordered pairs of distinct values?

Answers: n(n-1) and n(n-1)/2.

Polynomials have the form c0 + c1 n + c2 n2 + … + ck n
k

where the c’s are constant and k is a constant.
Note: A constant function is a (special type of) polynomial function.

Polynomials

Polynomials have excellent closure properties.
If p(x) and q(x) are both polynomials:
● c ⋅ p(x) is a polynomial for any constant c.
● p(x) + q(x) is a polynomial.
● p(x) ⋅ q(x) is a polynomial.
● p(q(x)) is a polynomial (known as composition).

The last point implies that you can call a
polynomial-time subroutine a polynomial number of
times, and the resulting run-time will still be polynomial.

Note: Terms of the form ck n
k log(n) are polylogarithmic

with n log(n) arising frequently (e.g. merge sort).

Data Structures & Advanced Programming 20Williams College CSCI 136

How many subsets of numbers are there?
How many permutations of numbers?

Answers: 2n and n!

Exponential terms have the form c ⋅ b e(n) where e(n)
is some polynomial in n. When comparing these to
polynomials, the variable n appears in the exponent
rather than in the base.

Exponential Functions

Notes:
● The base of the exponent is important. For

example, 3n grows much faster than 2n or 210n.
● If e(n) is logarithmic, then c ⋅ b e(n) is

polynomial.
● If e(n) is exponential, then c ⋅ b e(n) is doubly

exponential.

Data Structures & Advanced Programming 21Williams College CSCI 136

Binary search tree.

Logarithms commonly arise in computer science
when we repeatedly halve the search space.
(In some cases the halving is obtained using the help
of a data structure.)

Guess my number between 1 - 100.
I will tell you lower or higher.

How many guesses?

Logarithms

Notes:
● log log(x) is not the same as log2(x).
● By default the base is assumed to be 2.
● We typically don’t care about the base of the

logarithm. This is due to the change of base
formula which results in a constant factor.

Data Structures & Advanced Programming 22Williams College CSCI 136

Popular names for new humans.

There are relatively few problems that can be
answered in constant time. One example is below.

Constant Functions

Constant functions also arise when analyzing problems
whose input/instance size is bounded.

For example, the number of humans is n ≤ 8,000,000,000
which is constant, so sorting human names can be done
in constant-time. In particular, n log n ≅ 32,000,000,000.

This limitation is inherent to the way that we analyze
algorithms. Claiming constant-time for every real-world
instance is a great way to annoy computer scientists!

FIRST
Input: A non-empty list of integers L, and an integer k.

Output: yes, if the first integer in L is k. Otherwise, no.

https://nameberry.com/unisex-names
https://nameberry.com/unisex-names

Data Structures & Advanced Programming 23Williams College CSCI 136

Addendum: Arrays vs Linked Lists

Data Structures & Advanced Programming 24Williams College CSCI 136

Sequential Data
There are two fundamental ways in which sequential data is stored in a computer.
1. Arrays. The values are positioned sequentially within memory.

○ Pros: Fast access based on position.
○ Cons: Homogeneous (data points have same size); fixed predetermined size; slow insert / delete.

2. Linked Lists. The values are chained together using pointers.
○ Pros: Easy to resize; fast insert / delete.
○ Cons. Slow access based on position; node types.

Linked lists have variations including (a) doubly linked, (b) circularly linked, (c) tail pointers.
We’ll look at these in more detail later in the course.

