Administrative Details

• Remember: First Problem Set is online
• Due at beginning of class on Friday
• Lab 3 Today!
 • You *may* work with a partner
 • Come to lab with a plan!
 • Answer questions before lab
Last Time

- Measuring Growth
 - Big-O
- Introduction to Recursion
Today

• More Recursion
• Mathematical Induction (Weak)
• Mathematical Induction (Strong)
Longest Increasing Subsequence

- Given an array a of positive integers, find the largest subsequence of (not necessary consecutive) elements such that for any pair a[i], a[j] in the subsequence, if i<j, then a[i] < a[j].
- Example 10 7 12 3 5 11 8 9 1 15 has 3 5 8 9 15 as its longest increasing subsequence (LIS).
- How could we find an LIS of a?
- How could we prove our method was correct?
- Let’s think....
(Brilliant) Observation: A LIS for a[1 ... n] either contains a[1] ... or it doesn’t.

Therefore, a LIS for a[1 ... n] either

• contains a[1] along with an LIS for a[2 ... n] such that every element in the LIS is > a[1], or
• is a LIS for a[2 ... n]

How could we find a LIS of a[]?

• Use the B.O. to build a recursive method

How could we prove our method was correct?

• Induction!
public static int lisHelper(int[] arr, int curr, int maxSoFar) {
 if (curr == arr.length) return 0;
 if (arr[curr] <= maxSoFar)
 return lisHelper(arr, curr + 1, maxSoFar);
 else
 return Math.max(
 lisHelper(arr, curr + 1, maxSoFar),
 1 + lisHelper(arr, curr + 1, arr[curr]));
}
Recursion Tradeoffs

• Advantages
 • Often easier to construct recursive solution
 • Code is usually cleaner
 • Some problems do not have obvious non-recursive solutions

• Disadvantages
 • Overhead of recursive calls
 • Can use lots of memory (need to store state for each recursive call until base case is reached)
 • E.g. recursive fibonacci method
Proving Properties of Recursive Algorithms

- **Example: factorial**
 - Prove that \(\text{fact}(n) \) performs exactly \(n \) multiplications
 - Certainly true when \(n = 0 \)…
 - Also, if—for some \(n \)—\(\text{fact}(n) \) performs exactly \(n \) multiplications, then \(\text{fact}(n+1) \) clearly performs exactly those plus one more: \(n+1 \)
 - But \(\text{fact}(0) \) performs 0 multiplications, so \(\text{fact}(1) \) performs, \(\text{fact}(2) \) performs 2, ….

- **Said differently**
 - Base case: \(n = 0 \) returns 1, performing 0 multiplications
 - Assume that for some \(n \), \(\text{fact}(n) \) performs \(n \) multiplications.
 - \(\text{fact}(n+1) \) performs one multiplication directly: \((n \times \text{fact}(n-1)) \). We know that \(\text{fact}(n) \) performed \(n \) multiplications, therefore \(\text{fact}(n+1) \) performed \(n+1 \) multiplications.
Mathematical Induction

Principle of Mathematical Induction (Weak)

Let $P(0)$, $P(1)$, $P(2)$, ... be a sequence of statements, each of which could be either true or false. Suppose that

1. $P(0)$ is true, and
2. Whenever $P(n)$ is true, then so is $P(n+1)$.

Then all of the statements are true!

Note: Often Property 2 is stated as

2. Whenever $P(n-1)$ is true, then so is $P(n)$.

Apology: I do this a lot, as you’ll see on future slides!
Mathematical Induction

• The mathematical cousin of recursion is induction
• Induction is a proof technique
• Reflects the structure of the natural numbers
• Use to simultaneously prove an infinite number of theorems!
Mathematical Induction

• Example: Prove that for every $n \geq 0$

$$P_n : \sum_{i=0}^{n} i = 0 + 1 + \ldots + n = \frac{n(n+1)}{2}$$

• Proof by induction:
 • Base case: P_n is true for $n = 0$ (just check it!)
 • Induction step: If P_n is true for some $n \geq 0$, then P_{n+1} is true.

$$P_{n+1} : 0 + 1 + \ldots + n + (n + 1) = \frac{(n + 1)((n + 1) + 1)}{2} = \frac{(n + 1)(n + 2)}{2}$$

Check: $0 + 1 + \ldots + n + (n + 1) = \frac{n(n+1)}{2} + (n + 1) = \frac{(n+1)(n+2)}{2}$

• First equality holds by assumed truth of P_n.
Mathematical Induction

• Prove: \[\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1 \]

• Prove: \[0^3 + 1^3 + \ldots + n^3 = (0 + 1 + \ldots + n)^2 \]
Proof: \[0^3 + 1^3 + ... + n^3 = (0 + 1 + ... + n)^2\]

Note: I’m doing the \(n-1 \rightarrow n\) version

\[
(0^3 + 1^3 + ... n^3) = (0^3 + 1^3 + ... + (n-1)^3) + n^3
\]

Induction \[\overset{\Rightarrow}{=}\]

\[
(0 + 1 + ... + (n-1))^2 + n^3
\]

\[
= \left(\frac{n(n-1)}{2}\right)^2 + n^3
\]

\[
= n^2 \left(\frac{(n - 1)^2 + 4n}{4}\right)
\]

\[
= n^2 \left(\frac{n^2 + 2n + 1}{4}\right)
\]

\[
= n^2 \left(\frac{(n + 1)^2}{4}\right)
\]

\[
= \left(\frac{n(n + 1)}{2}\right)^2
\]

\[
= (0 + 1 + ... + n)^2
\]
Counting Method Calls

• Example: Fibonacci
 • Prove that fib(n) makes at least fib(n) calls to fib()
 • Base cases: n = 0: 1 call; n = 1; 1 call
 • Assume that for some n ≥ 2, fib(n-1) makes at least fib(n-1) calls to fib() and fib(n-2) makes at least fib(n-2) calls to fib().
 • Claim: Then fib(n) makes at least fib(n) calls to fib()
 - 1 initial call: fib(n)
 - By induction: At least fib(n-1) calls for fib(n-1)
 - And as least fib(n-2) calls for fib(n-2)
 - Total: 1 + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls
 • Note: Need two base cases!
 • One can show by induction that for n > 10: fib(n) > (1.5)^n
 • Thus the number of calls grows exponentially!
 • We can visualize this with a method call graph...
Mathematical Induction: Version 2

Principle of Mathematical Induction (Weak)

Let P_0, P_1, P_2, \ldots be a sequence of statements, each of which could be either true or false. Suppose that

1. P_0 and P_1 are true, and
2. Whenever P_{n-1} and P_{n-2} are true, then so is P_n.

Then all of the statements are true!

Other versions:

- Can have $k > 2$ base cases
- Doesn’t need to start at 0
Example: Binary Search

- Given an array a[] of positive integers in increasing order, and an integer x, find location of x in a[].
- Take “indexOf” approach: return -1 if x is not in a[]

```java
protected static int recBinarySearch(int a[], int value, int low, int high) {
    if (low > high) return -1;
    else {
        int mid = (low + high) / 2;  //find midpoint
        if (a[mid] == value) return mid;  //first comparison
            //second comparison
        else if (a[mid] < value)  //search upper half
            return recBinarySearch(a, value, mid + 1, high);
        else  //search lower half
            return recBinarySearch(a, value, low, mid - 1);
    }
```
Binary Search takes $\mathcal{O}(\log n)$ Time

Can we use induction to prove this?

- **Claim:** If $n = \text{high} - \text{low} + 1$, then recBinSearch performs at most $c (1 + \log n)$ operations, where c is *twice* the number of statements in recBinSearch

- **Base case:** $n = 1$: Then low = high so only c statements execute (method runs twice) and $c \leq c(1 + \log 1)$

- Assume that claim holds for some $n \geq 1$, does it hold for $n+1$? [Note: $n+1 > 1$, so low < high]

- **Problem:** Recursive call is *not* on n—it’s on $n/2$.

- **Solution:** We need a better version of the PMI...
Mathematical Induction

Principle of Mathematical Induction (Strong)

Let \(P(0), P(1), P(2), \ldots \) be a sequence of statements, each of which could be either true or false. Suppose that, for some \(k \geq 0 \)

1. \(P(0), P(1), \ldots, P(k) \) are true, and

2. Whenever \(P(1), P(2), \ldots, P(n) \) are true, then so is \(P(n+1) \).

Then all of the statements are true!
Binary Search takes $O(\log n)$ Time

Try again now:

- Assume that for some $n \geq 1$, the claim holds for all $k \leq n$, does claim hold for $n+1$?
- Yes! Either
 - $x = a[mid]$, so a constant number of operations are performed, or
 - RecBinSearch is called on a sub-array of size $n/2$, and by induction, at most $c(1 + \log(n/2))$ operations are performed.
 - This gives a total of at most $c + c(1 + \log(n/2)) = c + c(\log(2) + \log(n/2)) = c + c(\log n) = c(1 + \log n)$ statements
Bubble Sort

• First Pass:
 • (5 1 3 2 9) → (1 5 3 2 9)
 • (1 5 3 2 9) → (1 3 5 2 9)
 • (1 3 5 2 9) → (1 3 2 5 9)
 • (1 3 2 5 9) → (1 3 2 5 9)

• Second Pass:
 • (1 3 2 5 9) → (1 3 2 5 9)
 • (1 3 2 5 9) → (1 2 3 5 9)
 • (1 2 3 5 9) → (1 2 3 5 9)

• Third Pass:
 • (1 2 3 5 9) → (1 2 3 5 9)
 • (1 2 3 5 9) → (1 2 3 5 9)

• Fourth Pass:
 • (1 2 3 5 9) → (1 2 3 5 9)

http://www.youtube.com/watch?v=lyZQPjUT5B4
http://www.visualgo.net/sorting
Sorting Preview: Insertion Sort

• Simple sorting algorithm that works by building a sorted list one entry at a time
• Less efficient on large lists than more advanced algorithms
• Advantages:
 • Simple to implement and efficient on small lists
 • Efficient on data sets which are already substantially sorted
• Time complexity
 • $O(n^2)$
• Space complexity
 • $O(n)$
Sorting Preview: Insertion Sort

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Sorting Preview: Selection Sort

- Similar to insertion sort
- Performs worse than insertion sort in general
- Noted for its simplicity and performance advantages when compared to complicated algorithms
- The algorithm works as follows:
 - Find the maximum value in the list
 - Swap it with the value in the last position
 - Repeat the steps above for remainder of the list (ending at the second to last position)
Sorting Preview: Selection Sort

- **1 1** 3 27 5 16
- **1 1** 3 **16** 5 **27**
- **1 1** 3 **5** 16 **27**
- **5** 3 **11** 16 **27**
- **3** 5 **11** 16 **27**

- **Time Complexity:**
 - $O(n^2)$
- **Space Complexity:**
 - $O(n)$