Administrative Details

• Lab 3 Wednesday!
 • You *may* work with a partner
 • Come to lab with a plan!
 • Try to answer questions before lab
Last Time

- Vector Implementation
- Miscellany: Wrappers
- Condition Checking
 - Pre- and post-conditions, Assertions
- Asymptotic Growth & Measuring Complexity
Today

• Measuring Growth
 • Big-O
• Introduction to Recursion & Induction
Function Growth

Consider the following functions, for $x \geq 1$

- $f(x) = 1$
- $g(x) = \log_2(x)$ // Reminder: if $x=2^n$, $\log_2(x) = n$
- $h(x) = x$
- $m(x) = x \log_2(x)$
- $n(x) = x^2$
- $p(x) = x^3$
- $r(x) = 2^x$
Function Growth

- 2^x
- x^2
- $x \log_2(x)$
- x
- $\log_2(x)$
Function Growth & Big-O

• Rule of thumb: ignore multiplicative constants

• Examples:
 • Treat n and n/2 as same order of magnitude
 • $n^2/1000$, $2n^2$, and $1000n^2$ are “pretty much” just n^2
 • $a_0n^k + a_1n^{k-1} + a_2n^{k-2} + \ldots + a_k$ is roughly n^k

• The key is to find the most significant or dominant term

• Ex: $\lim_{x\to\infty} \frac{3x^4 - 10x^3 - 1}{x^4} = 3$ (Why?)
 • So $3x^4 - 10x^3 - 1$ grows “like” x^4
Asymptotic Bounds (Big-O Analysis)

• A function $f(n)$ is $O(g(n))$ if and only if there exist positive constants c and n_0 such that
 $$|f(n)| \leq c \cdot g(n) \text{ for all } n \geq n_0$$

• g is “at least as big as” f for large n
 • Up to a multiplicative constant c!

• Example:
 • $f(n) = n^2/2$ is $O(n^2)$
 • $f(n) = 1000n^3$ is $O(n^3)$
 • $f(n) = n/2$ is $O(n)$
Determining “Best” Upper Bounds

• We typically want the most conservative upper bound when we estimate running time
 • And among those, the simplest

• Example: Let \(f(n) = 3n^2 \)
 • \(f(n) \) is \(O(n^2) \)
 • \(f(n) \) is \(O(n^3) \)
 • \(f(n) \) is \(O(2^n) \) (see next slide)
 • \(f(n) \) is NOT \(O(n) \) (!!!)

• “Best” upper bound is \(O(n^2) \)

• We care about \(c \) and \(n_0 \) in practice, but focus on size of \(g \) when designing algorithms and data structures
What’s n_0? Messy Functions

- **Example:** Let $f(n) = 3n^2 - 4n + 1$. $f(n)$ is $O(n^2)$
 - Well, $3n^2 - 4n + 1 \leq 3n^2 + 1 \leq 4n^2$, for $n \geq 1$
 - So, for $c = 4$ and $n_0 = 1$, we satisfy Big-O definition

- **Example:** Let $f(n) = n^k$, for any fixed $k \geq 1$. $f(n)$ is $O(2^n)$
 - Harder to show: Is $n^k \leq c \cdot 2^n$ for some $c > 0$ and large enough n?
 - It is if and only if $\log_2(n^k) \leq \log_2(2^n)$, that is, iff $k \log_2(n) \leq n$.
 - That is iff $k \leq n / \log_2(n)$. But $n / \log_2(n) \to \infty$ as $n \to \infty$
 - This implies that for some n_0 on $n / \log_2(n) \geq k$ if $n \geq n_0$
 - Thus $n \geq k \log_2(n)$ for $n \geq n_0$ and so $2^n \geq n^k$
Vector Operations: Worst-Case

For \(n = \) Vector size (not capacity!):

- \(O(1) \): size(), capacity(), isEmpty(), get(i), set(i), firstElement(), lastElement()
- \(O(n) \): indexOf(), contains(), remove(elt), remove(i)
- What about add methods?
 - If Vector doesn’t need to grow
 - add(elt) is \(O(1) \) but add(elt, i) is \(O(n) \)
 - Otherwise, depends on ensureCapacity() time
 - Time to compute newLength : \(O(\log_2(n)) \)
 - Assuming doubling rule!
 - Time to copy array: \(O(n) \)
 - \(O(\log_2(n)) + O(n) \) is \(O(n) \)
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by a fixed amount d. How long does it take to add n items to an empty Vector?

- The array will be copied each time its capacity needs to exceed a multiple of d
 - At sizes 0, d, $2d$, …, n/d.
- Copying an array of size kd takes ckd steps for some constant c, giving a total of

$$\sum_{k=1}^{n/d} ckd = cd \sum_{k=1}^{n/d} k = cd \left(\frac{n}{d}\right)\left(\frac{n}{d} + 1\right)/2 = O(n^2)$$
Vectors: Add Method Complexity

Suppose we grow the Vector’s array by doubling.
How long does it take to add n items to an empty Vector?

• The array will be copied each time its capacity needs to exceed a power of 2
 • At sizes 0, 1, 2, 4, 8 … \(2^{\log_2 n}\)

• Copying an array of size \(2^k\) takes \(c 2^k\) steps for some constant \(c\), giving a total of

\[
\sum_{k=1}^{\log_2 n} c 2^k = c \sum_{k=1}^{\log_2 n} 2^k = c (2^{\log_2 n+1} - 1) = O(n)
\]

• Very cool!
Common Complexities

For $n =$ measure of problem size:

- $O(1)$: constant time and space
- $O(\log n)$: divide and conquer algorithms, binary search
- $O(n)$: linear dependence, simple list lookup
- $O(n \log n)$: divide and conquer sorting algorithms
- $O(n^2)$: matrix addition, selection sort
- $O(n^3)$: matrix multiplication
- $O(n^k)$: cell phone switching algorithms
- $O(2^n)$: subset sum, graph 3-coloring, satisfiability, ...
- $O(n!)$: traveling salesman problem (in fact $O(n^2 2^n)$)
Recursion

- General problem solving strategy
 - Break problem into smaller pieces
 - Sub-problems may look a lot like original – are often smaller versions of same problem
Recursion

• Many algorithms are recursive
 • Can be easier to understand (and prove correctness/state efficiency of) than iterative versions

• Today we will review recursion and then talk about techniques for reasoning about recursive algorithms
Factorial

- \(n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 \)

- How can we implement this?
 - We could use a for loop…

    ```java
    int product = 1;
    for (int i = 1; i <= n; i++)
        product *= i;
    ```

- But we could also write it recursively….
Factorial

- \(n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 1 \)
- But we could also write it recursively
 - \(n! = n \cdot (n-1)! \)
 - \(0! = 1 \)

```java
// Pre: n >= 0
public static int fact(int n) {
    if (n==0) return 1;
    else return n*fact(n-1);
}
```
Factorial

3! = 6
2! = 2
1! = 1
0! = 1
Factorial

- In recursion, we always use the same basic approach
- What’s our base case? [Sometimes “cases”]
 - $n=0; \text{fact}(0) = 1$
- What’s the recursive relationship?
 - $n>0; \text{fact}(n) = n \cdot \text{fact}(n-1)$
Fibonacci Numbers

- 1, 1, 2, 3, 5, 8, 13, ...

- Definition
 - $F_0 = 1$, $F_1 = 1$
 - For $n > 1$, $F_n = F_{n-1} + F_{n-2}$

- Inherently recursive!

- It appears almost everywhere
 - Growth: Populations, plant features
 - Architecture
 - Data Structures!
public class fib{
 // pre: n is non-negative
 public static int fib(int n) {
 if (n==0 || n == 1) {
 return 1;
 }
 else {
 return fib(n – 1) + fib(n – 2);
 }
 }

 public static void main(String args[]) {
 System.out.println(fib(Integer.valueOf(args[0]).intValue()));
 }
}
Towers of Hanoi

• Demo

• Base case:
 • One disk: Move from start to finish

• Recursive case (n disks):
 • Move smallest n-1 disks from start to temp
 • Move bottom disk from start to finish
 • Move smallest n-1 disks from temp to finish

• Let’s try to write it....
Longest Increasing Subsequence

- Given an array $a[]$ of positive integers, find the largest subsequence of (not necessary consecutive) elements such that for any pair $a[i]$, $a[j]$ in the subsequence, if $i<j$, then $a[i] < a[j]$.
- Example $10 7 12 3 5 11 8 9 1 15$ has $3 5 8 9 15$ as its longest increasing subsequence (LIS).
- How could we find an LIS of $a[]$?
- How could we prove our method was correct?
- Let’s think....
(Brilliant) Observation: A LIS for $a[1 \ldots n]$ either contains $a[1]$... or it doesn’t.

Therefore, a LIS for $a[1 \ldots n]$ either

- contains $a[1]$ along with an LIS for $a[2 \ldots n]$ such that every element in the LIS is > $a[1]$, or
- Is a LIS for $a[2 \ldots n]$

How could we find a LIS of $a[]$?

- Use the B.O. to build a recursive method

How could we prove our method was correct?

- Induction!
Longest Increasing Subsequence

// Pre: curr <= length

public static int lisHelper(int[] arr, int curr, int maxSoFar) {
 if(curr == arr.length) return 0;
 if(arr[curr] <= maxSoFar)
 return lisHelper(arr, curr + 1, maxSoFar);
 else
 return Math.max(
 lisHelper(arr, curr + 1, maxSoFar),
 1 + lisHelper(arr, curr + 1, arr[curr]));
}
Recursion Tradeoffs

• Advantages
 • Often easier to construct recursive solution
 • Code is usually cleaner
 • Some problems do not have obvious non-recursive solutions

• Disadvantages
 • Overhead of recursive calls
 • Can use lots of memory (need to store state for each recursive call until base case is reached)
 • E.g. recursive fibonacci method