CSCI 136
Data Structures &
Advanced Programming

Lecture 32
Fall 2018
Instructors: Bills
Last Time

• Adjacency List Implementation Details
 • Featuring many Iterators!
• More Fundamental Graph Properties
• An Important Algorithm: Minimum-cost spanning subgraph
Today’s Outline

• More on Prim’s Algorithm
• More Core Algorithms: Directed Graphs
 • Dijkstra’s Algorithm
Minimum-Cost Spanning Trees
Minimum-Cost Spanning Trees
Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here’s one idea:

Grow It Greedily!

- Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
- Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
- How close might this get us to the MCST?
Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does not always find a minimum coloring.
Recall: The Key

Lemma: Let $G = (V, E)$ be a connected graph and let V_1 and V_2 be a partition of V.

Then every MCST of G contains a cheapest edge between V_1 and V_2.

Note: If all edge costs are distinct there is only one cheapest edge between V_1 and V_2.
Using The Key to Prove Prim

We’ll assume all edge costs are distinct. Otherwise proof is slightly less elegant.

Let T be the tree produced by the greedy algorithm and suppose T^* is a MCST for G.

Claim: $T = T^*$

Idea of Proof: Show that every edge added to the tree T by the greedy algorithm is in T^*.

Clearly the first edge added to T is in T^*.

Why? Use the key!
Using The Key

Now use induction!

- Suppose, for some $k \geq 1$, that the first k edges added to T are in T^*. These form a tree T_k
- Let V_1 be the vertices of T_k and let $V_2 = V - V_1$
- Now, the greedy algorithm will add to T the cheapest edge e between V_1 and V_2
- But any MCST contains the (only!) cheapest edge between V_1 and V_2, so e is in T^*
- Thus the first $k+1$ edges of T are in T^*
Prim’s Algorithm

\[\text{prim}(G) \quad \text{// finds a MCST of connected } G=(V,E) \]

let \(v \) be a vertex of \(G \); set \(V_1 \leftarrow \{v\} \) and \(V_2 \leftarrow V - \{v\} \)

while \(|V_1| < |V| \)

let \(e \leftarrow \text{cheapest edge between } V_1 \text{ and } V_2 \)

add \(e \) to MCST

let \(u \leftarrow \text{the vertex of } e \text{ in } V_2 \)

move \(u \) from \(V_2 \) to \(V_1 \);
Prim’s Algorithm

`prim(G) // finds a MCST of connected G=(V,E)`

`let v be a vertex of G; set V₁←{v} and V₂←V - {v}`

`let A be the set of all edges between V₁ and V₂`

`while(|V₁|<|V|)`

`let e←cheapest edge in A between V₁ and V₂`

`add e to MCST`

`let u←the vertex of e in V₂`

`remove from A any edges from V₁ to u`

`move u from V₂ to V₁;`

`add to A all edges incident to u`
Prim’s Algorithm (Variant)

- Note: If G is not connected, A will eventually be empty even though $|V_1| < |V|$

- We fix this by
 - Replacing `while(|V_1| < |V|)` with
 - `while(|V_1| < |V|) && A \neq \emptyset`
 - Replacing
 - `until e is an edge between V_1 and V_2`
 - with
 - `until A \neq \emptyset or e is an edge between V_1 and V_2`

- Then Prim will find the MCST for the component containing v
Prim’s Algorithm (Variant)

\(\text{prim}(G) \) // finds a MCST of connected \(G=(V,E) \)

let \(v \) be a vertex of \(G \); set \(V_1 \leftarrow \{v\} \) and \(V_2 \leftarrow V - \{v\} \)

let \(A \) be the set of all edges between \(V_1 \) and \(V_2 \)

while \(|V_1| < |V| \) && \(|A| > 0 \)

repeat

remove cheapest edge \(e \) from \(A \)

until \(A \) is empty || \(e \) is an edge between \(V_1 \) and \(V_2 \)

if \(e \) is an edge between \(V_1 \) and \(V_2 \)

let \(v \leftarrow \text{the vertex of } e \text{ in } V_2 \)

move \(v \) from \(V_2 \) to \(V_1 \);

add to \(A \) all edges incident to \(v \)
Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges as “visited” in G
• We’ll “build” V_1 by marking its vertices visited
• How should we represent A?
 • What operations are important to A?
 • Add edges
 • Remove cheapest edge
 • A priority queue!
• When we remove an edge from A, check to ensure it has one end in each of V_1 and V_2
ComparableEdge Class

- Values in a PriorityQueue need to implement Comparable
- We wrap edges of the PQ in a class called ComparableEdge
 - It requires the label used by graph edges to be of a Comparable type
Prim’s Algorithm (Variant)

\texttt{prim}(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set \(V_1 \leftarrow \{v\} \) and \(V_2 \leftarrow V - \{v\} \)
let A be the set of all edges between \(V_1 \) and \(V_2 \)
while \(|V_1| < |V| \) \&\& \(|A| > 0\)
repeat
remove cheapest edge e from A
until A is empty \(\mid \mid e \) is an edge between \(V_1 \) and \(V_2 \)
if e is an edge between \(V_1 \) and \(V_2 \)
let \(v \leftarrow \) the vertex of \(e \) in \(V_2 \)
move \(v \) from \(V_2 \) to \(V_1 \);
add to A all edges incident to \(v \)
MCST: The Code

```
PriorityQueue<ComparableEdge<String,Integer>> q =
    new SkewHeap<ComparableEdge<String,Integer>>();

String v = null;        // current vertex
Edge<String,Integer> e; // current edge
boolean searching;      // still building tree
g.reset();              // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();
```
do {
 // visit the vertex and add all outgoing edges
 g.visit(v);
 Iterator<String> ai = g.neighbors(v);
 while (ai.hasNext()) {
 // turn it into outgoing edge
 e = g.getEdge(v, ai.next());
 // add the edge to the queue
 q.add(new ComparableEdge<String, Integer>(e));
 }
 ...
}
MCST: The Code

searching = true;
while (searching && !q.isEmpty()) {
 // grab next shortest edge
 e = q.remove();
 // Is e between V₁ and V₂ (subtle code!!)
 v = e.there();
 if (g.isVisited(v)) v = e.here();
 if (!g.isVisited(v)) {
 searching = false;
 g.visitEdge(g.getEdge(e.here(),
 e.there()));
 }
}
} while (!searching);
Prim : Space Complexity

- **Graph:** $O(|V| + |E|)$
 - Each vertex and edge uses a constant amount of space
- **Priority Queue:** $O(|E|)$
 - Each edge takes up constant amount of space
- Every other object (including the neighbor iterator) uses a constant amount of space
- **Result:** $O(|V| + |E|)$
 - Optimal in Big-O sense!
Prim : Time Complexity

Assume Map ops are $O(1)$ time (not quite true!)
For each iteration of do ... while loop

- Add neighbors to queue: $O(\text{deg}(v) \log |E|)$
 - Iterator operations are $O(1)$ [Why?]
 - Adding an edge to the queue is $O(\log |E|)$
- Find next edge: $O(\# \text{ edges checked } \times \log |E|)$
 - Removing an edge from queue is $O(\log |E|)$ time
 - All other operations are $O(1)$ time
Prim : Time Complexity

Over all iterations of do ... while loop

Step I: Add neighbors to queue:

- For each vertex, it’s $O(\text{deg}(v) \log |E|)$ time
- Adding over all vertices gives

$$\sum_{v \in V} \text{deg}(v) \log |E| = \log |E| \sum_{v \in V} \text{deg}(v) = \log |E| \times 2 |E|$$

- which is $O(|E| \log |E|) = O(|E| \log |V|)$

 - $|E| \leq |V|^2$, so $\log |E| \leq \log |V|^2 = 2 \log |V| = O(\log |V|)$
Prim : Time Complexity

Over all iterations of do ... while loop

Step 2: Find next edge: $O(\# \text{ edges checked } \times \log |E|)$
 - Each edge is checked at most once
 - Adding over all edges gives $O(|E| \log |E|)$ again

Thus, overall time complexity (worst case) of Prim’s Algorithm is $O(|E| \log |V|)$
 - Typically written as $O(m \log n)$
 - Where $m = |E|$ and $n = |V|$
The Problem: Given a graph \(G \) and a starting vertex \(v \), find, for each vertex \(u \neq v \) reachable from \(v \), a shortest path from \(v \) to \(u \).

- The Single Source Shortest Paths Problem
- Arises in many contexts, including network communications
- Uses edge weights (but we’ll call them “lengths”): assume they are non-negative numbers
- Could be a directed or undirected graph
Single Source Shortest Paths

- We’ll look at directed graphs
 - So the paths must be directed paths
- Let’s think....
- Suppose we have a set shortest paths \{P_u : u \neq v\}, where \(P_u\) is a shortest path from \(v\) to \(u\)
- Let \(H\) be the subgraph of \(G\) consisting of each vertex of \(G\) along with all of the edges in each \(P_u\)
- What can we say about \(H\)?
Observations

- If some vertex u has in-degree greater than 1, we can drop one of the incoming edges: Why?
 - Only the last edge of the shortest path from v-u is needed as an in-edge to u [Why?]
 - So we assume H has in-d eg(u)=1 for all $u \neq v$
 - We need no in-edges for v [Why?]

- H can’t have any directed cycles
 - Well, v can’t be on any cycles (in-d eg(v) = 0)
 - If there were a cycle, some vertex on it would have in-degree > 1 [Why?]
Single Source Shortest Paths

Observations

• In fact, even disregarding edge directions, there would be no cycles
 • Some vertex would have in-degree at least 2
 • Or else there’s a directed cycle (Why?)
• So, we can assume that there is some set of shortest paths that forms a (directed) tree
• This suggests that we try again to Greedily grow a tree
• The question is: How?
The Right Kind of Greed

• Build a MCST?
 • No: It won’t always give shortest paths

• A start: take shortest edge from start vertex s
 • That must be a shortest path!
 • And now we have a small tree of shortest paths

• What next?
 • Design an algorithm thinking inductively
 • Suppose we have found a tree T_k that has shortest paths from s to the $k-1$ vertices “closest” to s
 • What vertex would we want to add next?
Finding the Best Vertex to Add to T_k

Not all edges are displayed

Question: Can we find the next closest vertex to s?
What’s a Good Greedy Choice?

Idea: Pick edge e from u in T_k to v in $G - T_k$ that minimizes the length of the tree path from s up to—and through—e

Now add v and e to T_k to get tree T_{k+1}

Now T_{k+1} is a tree consisting of shortest paths from s to the k vertices closest to s! [Proof?] Repeat until $k = |V|$