Last Time

- Adjacency List Implementation Details
 - Featuring many Iterators!
- More Fundamental Graph Properties
- An Important Algorithm: Minimum-cost spanning subgraph
Today’s Outline

• More on Prim’s Algorithm
• More Core Algorithms: Directed Graphs
 • Dijkstra’s Algorithm
Minimum-Cost Spanning Trees
Minimum-Cost Spanning Trees
Recall: Finding a MCST

Suppose we just wanted to find a PCST (pretty cheap spanning tree), here’s one idea:

Grow It Greedily!

- Pick a vertex and find its cheapest incident edge. Now we have a (small) tree
- Repeatedly add the cheapest edge to the tree that keeps it a tree (connected, no cycles)
- How close might this get us to the MCST?
Recall: An Amazing Fact

Thm: (Prim 1957) The greedy tree-growing algorithm always finds a minimum-cost spanning tree for any connected graph.

Contrast this with the greedy exam scheduling algorithm, which does not always find a minimum coloring.
Recall: The Key

Lemma: Let $G=(V,E)$ be a connected graph and let V_1 and V_2 be a partition of V.

Then every MCST of G contains a cheapest edge between V_1 and V_2

Note: If all edge costs are distinct there is only one cheapest edge between V_1 and V_2
Using The Key to Prove Prim

We’ll assume all edge costs are distinct

Otherwise proof is slightly less elegant

Let T be the tree produced by the greedy algorithm and suppose T* is a MCST for G

Claim: $T = T^*$

Idea of Proof: Show that every edge added to the tree T by the greedy algorithm is in T*

Clearly the first edge added to T is in T*

Why? Use the key!
Using The Key

Now use induction!

• Suppose, for some $k \geq 1$, that the first k edges added to T are in T^*. These form a tree T_k

• Let V_1 be the vertices of T_k and let $V_2 = V - V_1$

• Now, the greedy algorithm will add to T the cheapest edge e between V_1 and V_2

• But any MCST contains the (only!) cheapest edge between V_1 and V_2, so e is in T^*

• Thus the first $k+1$ edges of T are in T^*
Prim’s Algorithm

\[\text{prim}(G) \quad // \text{finds a MCST of connected } G = (V, E) \]

\[\text{let } v \text{ be a vertex of } G; \text{ set } V_1 \leftarrow \{v\} \text{ and } V_2 \leftarrow V_1 - \{v\} \]

\[\text{while}(|V_1| < |V|) \]

\[\text{let } e \leftarrow \text{cheapest edge between } V_1 \text{ and } V_2 \]

\[\text{add } e \text{ to MCST} \]

\[\text{let } u \leftarrow \text{the vertex of } e \text{ in } V_2 \]

\[\text{move } u \text{ from } V_2 \text{ to } V_1; \]
Prim’s Algorithm

\texttt{prim(G)} // finds a MCST of connected \texttt{G}=(\texttt{V,E})

let \texttt{v} be a vertex of \texttt{G}; set \texttt{V}_1 \leftarrow \{v\} and \texttt{V}_2 \leftarrow \texttt{V}_1 - \{v\}

let \texttt{A} be the set of all edges between \texttt{V}_1 and \texttt{V}_2

while (|\texttt{V}_1| < |\texttt{V}|)

\hspace{1em} let \texttt{e} \leftarrow \text{cheapest edge in} \texttt{A} \text{ between} \texttt{V}_1 \text{ and} \texttt{V}_2

\hspace{1em} add \texttt{e} to MCST

\hspace{1em} let \texttt{u} \leftarrow \text{the vertex of} \texttt{e} \text{ in} \texttt{V}_2

\hspace{1em} remove from \texttt{A} any edges from \texttt{V}_1 \text{ to} \texttt{u}

\hspace{1em} move \texttt{u} from \texttt{V}_2 \text{ to} \texttt{V}_1;

\hspace{1em} add to \texttt{A} all edges incident to \texttt{u}
Prim’s Algorithm (Variant)

• Note: If G is not connected, A will eventually be empty even though $|V_1| < |V|$

• We fix this by
 • Replacing $\text{while}(|V_1| < |V|)$ with
 • $\text{while}(|V_1| < |V|) \&\& A \neq \emptyset$
 • Replacing
 • $\text{until e is an edge between } V_1 \text{ and } V_2$
 • with
 • $\text{until } A \neq \emptyset \text{ or e is an edge between } V_1 \text{ and } V_2$

• Then Prim will find the MCST for the component containing v
Prim’s Algorithm (Variant)

prim(G) // finds a MCST of connected G=(V,E)
let v be a vertex of G; set V₁ ← {v} and V₂ ← V₁ - {v}
let A be the set of all edges between V₁ and V₂
while |V₁| < |V| && |A| > 0
 repeat
 remove cheapest edge e from A
 until A is empty || e is an edge between V₁ and V₂
if e is an edge between V₁ and V₂
 let v ← the vertex of e in V₂
 move v from V₂ to V₁;
 add to A all edges incident to v
Implementing Prim’s Algorithm

• We’ll “build” the MCST by marking its edges as “visited” in G
• We’ll “build” \(V_1 \) by marking its vertices visited
• How should we represent A?
 • What operations are important to A?
 • Add edges
 • Remove cheapest edge
 • A priority queue!
• When we remove an edge from A, check to ensure it has one end in each of \(V_1 \) and \(V_2 \)
ComparableEdge Class

• Values in a PriorityQueue need to implement Comparable

• We wrap edges of the PQ in a class called ComparableEdge
 • It requires the label used by graph edges to be of a Comparable type
Prim's Algorithm (Variant)

\texttt{prim}(G) // finds a MCST of connected \(G=(V,E)\)

\texttt{let} \(v\) \texttt{be a vertex of} \(G\); \texttt{set} \(V_1 \leftarrow \{v\}\) \texttt{and} \(V_2 \leftarrow V_1 - \{v\}\)

\texttt{let} \(A\) \texttt{be the set of all edges between} \(V_1\) \texttt{and} \(V_2\)

\texttt{while} \(|V_1| < |V| \texttt{&&} |A| > 0\)

\texttt{repeat}

remove cheapest edge \(e\) \texttt{from} \(A\)

\texttt{until} \(A\) \texttt{is empty} \texttt{||} \(e\) \texttt{is an edge between} \(V_1\) \texttt{and} \(V_2\)

\texttt{if} \(e\) \texttt{is an edge between} \(V_1\) \texttt{and} \(V_2\)

\texttt{let} \(v\) \texttt{the vertex of} \(e\) \texttt{in} \(V_2\)

\texttt{move} \(v\) \texttt{from} \(V_2\) \texttt{to} \(V_1\); \texttt{add to} \(A\) \texttt{all edges incident to} \(v\)
PriorityQueue<ComparableEdge<String,Integer>> q =
 new SkewHeap<ComparableEdge<String,Integer>>();

String v = null; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree
g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext()) return;
v = vi.next();
MCST: The Code

do {
 // visit the vertex and add all outgoing edges
 g.visit(v);
 Iterator<String> ai = g.neighbors(v);
 while (ai.hasNext()) {
 // turn it into outgoing edge
 e = g.getEdge(v, ai.next());
 // add the edge to the queue
 q.add(new ComparableEdge<String, Integer>(e));
 }
...

MCST: The Code

```java
searching = true;
while (searching && !q.isEmpty()) {
    // grab next shortest edge
    e = q.remove();
    // Is e between V₁ and V₂ (subtle code!!)
    v = e.there();
    if (g.isVisited(v)) v = e.here();
    if (!g.isVisited(v)) {
        searching = false;
        g.visitEdge(g.getEdge(e.here(),
                            e.there()));
    }
}
} while (!searching);
```
Prim : Space Complexity

• Graph: $O(|V| + |E|)$
 • Each vertex and edge uses a constant amount of space
• Priority Queue $O(|E|)$
 • Each edge takes up constant amount of space
• Every other object (including the neighbor iterator) uses a constant amount of space
• Result: $O(|V| + |E|)$
 • Optimal in Big-O sense!
Prim: Time Complexity

Assume Map ops are $O(1)$ time (not quite true!)
For each iteration of do ... while loop

- Add neighbors to queue: $O(\deg(v) \log |E|)$
 - Iterator operations are $O(1)$ [Why?]
 - Adding an edge to the queue is $O(\log |E|)$
- Find next edge: $O(\# \text{ edges checked} \times \log |E|)$
 - Removing an edge from queue is $O(\log |E|)$ time
 - All other operations are $O(1)$ time
Prim : Time Complexity

Over all iterations of do ... while loop

Step I: Add neighbors to queue:

• For each vertex, it’s $O(\deg(v) \log |E|)$ time
• Adding over all vertices gives

$$\sum_{v \in V} \deg(v) \log |E| = \log |E| \sum_{v \in V} \deg(v) = \log |E| \times 2 |E|$$

• which is $O(|E| \log |E|) = O(|E| \log |V|)$
 • $|E| \leq |V|^2$, so $\log |E| \leq \log |V|^2 = 2 \log |V| = O(\log |V|)$
Over *all* iterations of do ... while loop

Step 2: Find next edge: \(O(\# \text{ edges checked} \times \log |E|) \)
- Each edge is checked at most once
- Adding over all edges gives \(O(|E| \log |E|) \) again

Thus, overall time complexity (worst case) of Prim’s Algorithm is \(O(|E| \log |V|) \)
- Typically written as \(O(m \log n) \)
 - Where \(m = |E| \) and \(n = |V| \)
Single Source Shortest Paths

The Problem: Given a graph G and a starting vertex v, find, for each vertex $u \neq v$ reachable from v, a shortest path from v to u.

- The Single Source Shortest Paths Problem
- Arises in many contexts, including network communications
- Uses edge weights (but we’ll call them “lengths”): assume they are non-negative numbers
- Could be a directed or undirected graph
Single Source Shortest Paths

• We’ll look at directed graphs
 • So the paths must be directed paths
• Let’s think....
• Suppose we have a set shortest paths \(\{P_u : u \neq v\} \), where \(P_u \) is a shortest path from \(v \) to \(u \)
• Let \(H \) be the subgraph of \(G \) consisting of each vertex of \(G \) along with all of the edges in each \(P_u \)
• What can we say about \(H \)?
Single Source Shortest Paths

Observations

• If some vertex u has in-degree greater than 1, we can drop one of the incoming edges: Why?
 • Only the last edge of the shortest path from v-u is needed as an in-edge to u [Why?]
 • So we assume H has in-deg$(u)=1$ for all $u\neq v$
 • We need no in-edges for v [Why?]

• H can’t have any directed cycles
 • Well, v can’t be on any cycles (in-deg$(v) = 0$)
 • If there were a cycle, some vertex on it would have in-degree > 1 [Why?]
Observations

- In fact, even disregarding edge directions, there would be no cycles
 - Some vertex would have in-degree at least 2
 - Or else there’s a directed cycle (Why?)
- So, we can assume that there is some set of shortest paths that forms a (directed) tree
- This suggests that we try again to
 Greedily grow a tree
- The question is: How?
The Right Kind of Greed

- Build a MCST?
 - No: It won’t always give shortest paths
- A start: take shortest edge from start vertex s
 - That must be a shortest path!
 - And now we have a small tree of shortest paths
- What next?
 - Design an algorithm thinking inductively
 - Suppose we have found a tree T_k that has shortest paths from s to the $k-1$ vertices “closest” to s
 - What vertex would we want to add next?
Finding the Best Vertex to Add to T_k

Not all edges are displayed

Question: Can we find the next closest vertex to s?
What’s a Good Greedy Choice?

Idea: Pick edge e from u in T_k to v in $G - T_k$ that minimizes the length of the tree path from s up to–and through–e

Now add v and e to T_k to get tree T_{k+1}

Now T_{k+1} is a tree consisting of shortest paths from s to the k vertices closest to s! [Proof?] Repeat until $k = |V|$