CSCI 136
Data Structures &
Advanced Programming

Lecture 28
Fall 2017
Instructors: Bill Bill
Last Time

• More on Graphs
 • Built up a vocabulary to talk about graphs
 • Proved some things about graphs
 • Introduced:
 • Connectedness
 • Reachability
This Time

- More on Graphs
 - Applications and Problems
 - Testing connectedness
 - Counting connected components
 - Breadth-first
 - Depth-first search
 - And recursive depth-first search
- Directed Graphs : Introduction
Next Time?

- More Directed Graphs
 - Reachability and (Strong) Connectedness
- Graph Data Structures: Implementation
 - Graph Interface
 - Adjacency Array Implementation Basic Concept
 - Adjacency List Implementation Basic Concept
 - Adjacency Array Implementation Details
Basic Graph Algorithms

• We’ll look at a number of graph algorithms
 • Connectedness: Is G connected?
 • If not, how many connected components does G have?
 • Cycle testing: Does G contain a cycle?
 • Does G contain a cycle through a given vertex?
 • If the edges of G have costs:
 • What is the cheapest subgraph connecting all vertices
 – Called a connected, spanning subgraph
 • What is a cheapest path from u to v?
• And more....
Operations on Graphs

• What are the basic operations we need to describe algorithms on graphs?
 • Given vertices u and v: are they adjacent?
 • Given vertex v and edge e, are they incident?
 • Given an edge e, get its incident vertices (ends)
 • How many vertices are adjacent to v? (degree of v)
 • The vertices adjacent to v are called its neighbors
 • Get a list of the vertices adjacent to v
 • From which we can get the edges incident with v
Testing Connectedness

• How can we determine whether G is connected?
 • Pick a vertex v; see if every vertex u is reachable from v

• How could we do this?
 • Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices
 • Assume we can mark a vertex as “visited”

• How do we manage all of this visiting?
 • Let’s try an example…
Reachability: Breadth-First Search

\[\text{BFS}(G, v) \] // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
\[\text{count} \leftarrow 0; \]
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty
\[\text{current} \leftarrow \text{Q.dequeue}(); \]
for each unvisited neighbor u of current :
\[\text{add u to Q; mark u as visited; count++} \]
return count;

Now compare value returned from \(\text{BFS}(G, v) \) to \(|V|\)
BFS Reflections

- The BFS algorithm traced out a tree T_v: the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_v is called a *BFS tree* of G with root v
- The vertices of T_v are visited in *level-order*
- This reveals a natural measure of distance between vertices: the length of (any) shortest path between the vertices
Definition: The \textit{distance} between two vertices u and v in an undirected graph $G=(V,E)$ is the minimum of the path lengths over all $u-v$ paths.

- Distance is the depth of u in T_v (a BFS tree from v)
 - We write distance as $d(u,v)$
Distance in Undirected Graphs

- Distance satisfies the following properties:
 - \(d(u, u) = 0 \), for all \(u \in V \)
 - \(d(u, v) = d(v, u) \), for all \(u, v \in V \)
 - \(d(u, v) \leq d(u, w) + d(w, v) \), for all \(u, v, w \in V \)

- The last property is called the *triangle inequality*
Reachability: Depth-First Search

\[\text{DFS}(G, v) \quad // \text{Do a depth-first search of } G \text{ starting at } v \]

// pre: all vertices are marked as unvisited

\[\text{count} \leftarrow 0; \]

Create empty stack \(S \); push \(v \); mark \(v \) as visited; \(\text{count}++; \)

While \(S \) isn’t empty

\[\text{current} \leftarrow S.\text{pop}(); \]

for each unvisited neighbor \(u \) of \(\text{current} \):

\[\text{add } u \text{ to } S; \text{mark } u \text{ as visited}; \text{count}++; \]

return \(\text{count}; \)

Now compare value returned from \(\text{DFS}(G, v) \) to \(|V| \)
DFS Reflections

• The DFS algorithm traced out a tree different from that produced by BFS
 • It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
• It is called a DFS tree of G with root v
• Vertices are visited in pre-order w.r.t. the tree
• By manipulating the stack differently, we could produce a post-order version of DFS
• And perhaps write DFS recursively….
Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
// Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1;

for each unvisited neighbor u of v:
 count += DFS(G,u);

return count;

Is it even clear that this method does what we want?!

Let’s prove some facts about it....
Recursive Depth-First Search

Claim: DFS visits all vertices \(w \) reachable from \(v \)

- Proof: Induction on length \(d \) of shortest path from \(v \) to \(w \)
 - Base case: \(d = 0 \): Then \(v = w \) ✓
 - Ind. Hyp.: Assume DFS visits all vertices \(w \) of distance at most \(d \) from \(v \) (for some \(d \geq 0 \)).
 - Ind. Step: Suppose now that \(w \) is distance \(d+1 \) from \(v \). Consider a path of length \(d+1 \) from \(v \) to \(w \) and let \(u \) be the next-to-last vertex on the path.
Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

• Proof: Induction on length d of shortest path from v to w
 • The path is v = v_0, v_1, v_2, ..., v_d = u, v_{d+1} = w
 • (The edges are implied so not explicitly written!)
 • By Ind. Hyp., u is visited. At this point, if w has not yet been visited, it will be one of the unvisited vertices on which DFS() is recursively called, so it will then be visited.
Recursive Depth-First Search

Claim: DFS visits only vertices reachable from v

- Idea: Prove by induction on number of times DFS is called that DFS is only called on vertices w reachable from v

Claim: DFS counts correctly the number of vertices reachable from v

- Idea: Induction on number of unvisited vertices reachable from v
 - DFS will never be called on same vertex twice
Recursive Depth-First Search

Claim: \(\text{DFS}(G, v) \) returns the number of unvisited nodes reachable from \(v \)

Proof: Uses previous two observations

- DFS visits every node reachable from \(v \)
- DFS doesn’t visit any node not reachable from \(v \)
Definition: In a directed graph $G = (V, E)$, each edge e in E is an ordered pair: $e = (u, v)$ vertices: its incident vertices. The source of e is u; the destination/target is v.

Note: $(u, v) \neq (v, u)$
Directed Graphs

• The (out) neighbors of B are D, G, H: B has out-degree 3
• The in neighbors of B are A, C: B has in-degree 2
• A is a source in G: A has in-degree 0
• D is sink in G: D has out-degree 0

A walk is still an alternating sequence of vertices and edges
\[u = v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k = v \]
but now \(e_i = (v_{i-1}, v_i) \): all edges point along direction of walk
Directed Graphs

- A, B, H, E, D is a walk from A to D
- It’s also a (simple) path
- D, E, H, B, A is not a walk from D to A
- B, G, F, C, B is a (directed) cycle (it’s a 4-cycle)
- So is H, E, H (a 2-cycle)

- D is reachable from A (via path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A
Directed Graphs

• A BFS of G from A visits every vertex
• A BFS of G from F visits all vertices but A
• A BFS of G from E visits only E, H, D

• Connectivity in directed graphs is more subtle than in undirected graphs!
Directed Graphs

- Vertices u and v are *mutually reachable* vertices if there are paths from u to v and v to u.
- *Maximal* sets of mutually reachable vertices form the *strongly connected components* of G.
Implementing Graphs

• Involves a number of implementation decisions, depending on intended uses
 • What kinds of graphs will be available?
 • Undirected, directed, mixed
 • What underlying data structures will be used?
 • What functionality will be provided
 • What aspects will be public/protected/private
• We’ll focus on popular implementations for undirected and directed graphs (separately)