CSCI 136
Data Structures &
Advanced Programming

Lecture 27
Fall 2017

Instructors: Bill — Bill
Last Time

• Introduction To Graphs
 • Definitions and Properties: Undirected Graphs
Today’s Outline

• More on Graphs
 • Applications and Problems
 • Testing connectedness
 • Counting connected components
 – Breadth-first and Depth-first search
 • Directed Graphs
 • Definition and Properties
 • Reachability and (Strong) Connectedness
• Graph Data Structures: Preliminaries
 • Graph Interface
A Basic Graph Fact

• Denote the degree of a vertex \(v \) by \(\text{deg}(v) \).
• Thm: For any graph \(G = (V,E) \)

\[
\sum_{v \in V} \text{deg}(v) = 2|E|
\]

where \(|E| \) is the number of edges in \(G \)

• Proof Hint: Induction on \(|E| \): How does removing an edge change the equation?
 • Instead: Count pairs \((v,e)\) where \(v \) is incident with \(e \)
Reachability and Connectedness

• Def’n: A vertex v in G is *reachable* from a vertex u in G if there is a path from u to v
• v is reachable from u iff u is reachable from v
• Def’n: An undirected graph G is *connected* if for every pair of vertices u, v in G, v is reachable from u (and vice versa)
• The set of all vertices reachable from v, along with all edges of G connecting any two of them, is called the *connected component of v*
Basic Graph Algorithms

• We’ll look at a number of graph algorithms
 • Connectedness: Is G connected?
 • If not, how many connected components does G have?
 • Cycle testing: Does G contain a cycle?
 • Does G contain a cycle through a given vertex?
 • If the edges of G have costs:
 • What is the cheapest subgraph connecting all vertices
 – Called a connected, spanning subgraph
 • What is a cheapest path from u to v?
 • And more....
Operations on Graphs

- What are the basic operations we need to describe algorithms on graphs?
 - Given vertices u and v: are they adjacent?
 - Given vertex v and edge e, are they incident?
 - Given an edge e, get its incident vertices (ends)
 - How many vertices are adjacent to v? (degree of v)
 - The vertices adjacent to v are called its neighbors
 - Get a list of the vertices adjacent to v
 - From which we can get the edges incident with v
Testing Connectedness

• How can we determine whether G is connected?
 • Pick a vertex v; see if every vertex u is reachable from v

• How could we do this?
 • Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices
 • Assume we can mark a vertex as “visited”

• How do we manage all of this visiting?
 • Let’s try an example…
Reachability: Breadth-First Search

\[
\text{BFS}(G, v) \quad // \text{Do a breadth-first search of } G \text{ starting at } v
\]
\[
// \text{pre: all vertices are marked as unvisited}
\]
\[
\text{count} \leftarrow 0;
\]
\[
\text{Create empty queue } Q; \text{ enqueue } v; \text{ mark } v \text{ as visited}; \text{ count}++
\]
\[
\text{While } Q \text{ isn’t empty}
\]
\[
\quad \text{current} \leftarrow Q.\text{dequeue}();
\]
\[
\quad \text{for each unvisited neighbor } u \text{ of current :}
\]
\[
\quad \quad \text{add } u \text{ to } Q; \text{ mark } u \text{ as visited}; \text{ count}++
\]
\[
\text{return count;}
\]

Now compare value returned from BFS(G,v) to size of V
BFS Reflections

- The BFS algorithm traced out a tree T_v: the edges connecting a visited vertex to (as yet) unvisited neighbors
- T_v is called a **BFS tree of G with root v (or from v)**
- The vertices of T_v are visited in **level-order**
- This reveals a natural measure of distance between vertices: the length of (any) shortest path between the vertices
Distance in Undirected Graphs

Def: The distance between two vertices u and v in an undirected graph $G=(V,E)$ is the minimum of the path lengths over all u-v paths.

- It is the depth of u in T_v: a BFS tree from v
- We write it as $d(u,v)$. It satisfies the properties
 - $d(u,u) = 0$, for all $u \in V$
 - $d(u,v) = d(v,u)$, for all $u,v \in V$
 - $d(u,v) \leq d(u,w) + d(w,v)$, for all $u,v,w \in V$
- This last property is call the triangle inequality
Reachability: Depth-First Search

\[\text{DFS}(G, v) \] // Do a depth-first search of \(G \) starting at \(v \)

// pre: all vertices are marked as unvisited

count \(\leftarrow 0; \)

Create empty stack \(S \); push \(v \); mark \(v \) as visited; count++;

While \(S \) isn’t empty

\[\text{current} \leftarrow S\.pop(); \]

// for each unvisited neighbor \(u \) of current:

\[\text{add } u \text{ to } S; \text{ mark } u \text{ as visited}; \text{ count}++ \]

return count;

Now compare value returned from \(\text{DFS}(G,v) \) to size of \(V \)
DFS Reflections

• The DFS algorithm traced out a tree different from that produced by BFS
 • It still consists of the edges connecting a visited vertex to (as yet) unvisited neighbors
• It is called a DFS tree of G with root v (or from v)
• Vertices are visited in pre-order w.r.t. the tree
• By manipulating the stack differently, we could produce a post-order version of DFS
• And perhaps write DFS recursively….
Recursive Depth-First Search

// Before first call to DFS, set all vertices to unvisited
// Then call DFS(G,v)
DFS(G, v)

Mark v as visited; count = 1;
for each unvisited neighbor u of v:
 count += DFS(G,u);
return count;

Is it even clear that this method does what we want?!

Let's prove some facts about it....
Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

• Proof: Induction on length d of shortest path from v to w

 • Base case: d = 0: Then v = w ✓

 • Ind. Hyp.: Assume DFS visits all vertices w of distance at most d from v (for some d ≥ 0).

 • Ind. Step: Suppose now that w is distance d+1 from v. Consider a path of length d+1 from v to w and let u be the next-to-last vertex on the path
Recursive Depth-First Search

Claim: DFS visits all vertices w reachable from v

• Proof: Induction on length d of shortest path from v to w
 • The path is v = v₀, v₁, v₂, ... , v_d = u, v_{d+1} = w
 • The edges are implied so not explicitly written!
 • By Ind. Hyp., u is visited. At this point, if w has not yet been visited, it will be one of the unvisited vertices on which DFS() is recursively called, so it will then be visited.
Recursive Depth-First Search

Claim: DFS visits only vertices reachable from \(v \)
- Idea: Prove by induction on number of times DFS is called that DFS is only called on vertices \(w \) reachable from \(v \)

Claim: DFS counts correctly the number of vertices reachable from \(v \)
- Idea: Induction on number of unvisited vertices reachable from \(v \)
 - DFS will never be called on same vertex twice
Recursive Depth-First Search

Claim: DFS(G,v) returns the number of unvisited nodes reachable from v

Proof: Uses previous two observations

- DFS visits every node reachable from v
- DFS doesn’t visit any node not reachable from v
Def’n: In a directed graph $G = (V,E)$, each edge e in E is an ordered pair: $e = (u,v)$ vertices: its incident vertices. The source of e is u; the destination/target is v.

Note: $(u,v) \neq (v,u)$
Directed Graphs

- The (out) neighbors of B are D, G, H: B has out-degree 3
- The in neighbors of B are A, C: B has in-degree 2
- A has in-degree 0: it is a source in G; D has out-degree 0: it is a sink in G

A walk is still an alternating sequence of vertices and edges

\[u = v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k = v \]

but now \(e_i = (v_{i-1}, v_i) \): all edges point along direction of walk
Directed Graphs

- A, B, H, E, D is a walk from A to D
- It's also a (simple) path
- D, E, H, B, A is *not* a walk from D to A
- B, G, F, C, B is a (directed) cycle (it's a 4-cycle)
- So is H, E, H (a 2-cycle)

- D is reachable from A (via path A, B, D), but A is not reachable from D
- In fact, every vertex is reachable from A