Last Time

• Introduction To Graphs
 • Definitions and Properties: Undirected Graphs
Today’s Outline

• More on Graphs
 • Applications and Problems
 • Testing connectedness
 • Counting connected components
 – Breadth-first and Depth-first search
 • Directed Graphs
 • Definition and Properties
 • Reachability and (Strong) Connectedness

• Graph Data Structures: Preliminaries
 • Graph Interface
Basic Definitions & Concepts

- **Definition:** An *undirected graph* $G = (V, E)$ consists of two sets:
 - V: the *vertices* of G
 - E: the *edges* of G

- Each edge e in E is defined by a set of two vertices: its *incident vertices*
- We write $e = \{u, v\}$ and say that u and v are *adjacent*
- The *degree* of a vertex is the number of *incident edges* (loops counted twice)
Walking Along a Graph

- A walk from u to v in a graph $G = (V,E)$ is an alternating sequence of vertices and edges:

 $$u = v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k = v$$

 such that each $e_i = \{v_i, v_{i+1}\}$ for $i = 1, \ldots, k$

- Note a walk starts and ends on a vertex.

- If no edge appears more than once then the walk is called a path.

- If no vertex appears more than once then the walk is a simple path.
Walking In Circles

- A *closed walk* in a graph $G = (V,E)$ is a walk

 $v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k$

 such that $v_0 = v_k$ (it ends at the starting v)

- A *circuit* is a *path* where $v_0 = v_k$

 - Circuit vs. closed walk? Circuit has no repeat edges

- A *cycle* is a *simple path* where $v_0 = v_k$

 - Circuit vs. cycle? Cycle has no repeated vertices.

- The *length* of any of these is the number of edges in the sequence
Little Tiny Theorems

• If there is a walk from u to v, then there is a walk from v to u.
• If there is a walk from u to v, then there is a path from u to v (and from v to u)
• If there is a path from u to v, then there is a simple path from u to v (and v to u)
• Every circuit through v contains a cycle through v
• Not every closed walk through v contains a cycle through v! [Try to find an example!]
A Basic Graph Fact

• Denote the degree of a vertex v by $\text{deg}(v)$.
• Theorem: For any graph $G = (V, E)$

\[\sum_{v \in V} \text{deg}(v) = 2 |E| \]

where $|E|$ is the number of edges in G

• Proof Hint: Induction on $|E|$: How does removing an edge change the equation?
 • Instead: Count pairs (v,e) where v is incident with e
Reachability and Connectedness

• **Definition:** A vertex \(v \) in \(G \) is *reachable* from a vertex \(u \) in \(G \) if there is a path from \(u \) to \(v \)
 • \(v \) is reachable from \(u \) iff \(u \) is reachable from \(v \)

• **Definition:** An undirected graph \(G \) is *connected* if for every pair of vertices \((u, v)\) in \(G \), \(v \) is reachable from \(u \) (and vice versa)

• The set of all vertices reachable from \(v \), along with all edges of \(G \) connecting any two of them, is called the *connected component* of \(v \)
Basic Graph Algorithms

• We’ll look at a number of graph algorithms
 • Connectedness: Is G connected?
 • If not, how many connected components does G have?
 • Cycle testing: Does G contain a cycle?
 • Does G contain a cycle through a given vertex?
 • If the edges of G have costs:
 • What is the cheapest subgraph connecting all vertices
 – Called a connected, spanning subgraph
 • What is a cheapest path from u to v?
 • And more....
Operations on Graphs

• What are the basic operations we need to describe algorithms on graphs?
 • Given vertices u and v: are they adjacent?
 • Given vertex v and edge e, are they incident?
 • Given an edge e, get its incident vertices (ends)
 • How many vertices are adjacent to v? (degree of v)
 • The vertices adjacent to v are called its neighbors
 • Get a list of the vertices adjacent to v
 • From which we can get the edges incident with v
Testing Connectedness

• How can we determine whether G is connected?
 • Pick a vertex v; see if every vertex u is reachable from v

• How could we do this?
 • Visit the neighbors of v, then visit their neighbors, etc. See if you reach all vertices
 • Assume we can mark a vertex as “visited”

• How do we manage all of this visiting?
 • Let’s try an example…
Reachability: Breadth-First Search

\[
\text{BFS}(G, v) \quad // \text{Do a breadth-first search of } G \text{ starting at } v
\]

// pre: all vertices are marked as unvisited

count \leftarrow 0;

Create empty queue Q; enqueue v; mark v as visited; count++

While Q isn’t empty

\[
\text{current } \leftarrow Q.\text{dequeue}();
\]

for each unvisited neighbor u of current:

\[
\text{add } u \text{ to } Q; \text{mark } u \text{ as visited}; \text{count++}
\]

return count;

Now compare value returned from BFS(G,v) to |V|