Administrative Details

• Lab 10: Two Towers is online
 - No partners this week!

• Final Exam location: TBL 112
 - Old news: It’s on Dec. 14th, 9:30--noon
Last Time

• **Efficient** Binary search trees (Ch 14)
 • AVL Trees
 • Height is $O(\log n)$, so all operations are $O(\log n)$
 • Red-Black Trees
 • Different height-balancing idea: height is $O(\log n)$
 • All operations are $O(\log n)$
 • Splay Trees
 • No guaranteed balance; good *amortized* performance
 • Any sequence of m operations take $O(m \log n)$ time
Today’s Outline

Less esoteric…

• Bit operations
 • Useful in general and required for Lab 10

• Introduction To Graphs
 • Basic Definitions and Properties
 • Applications and Problems
Representing Numbers

- Humans usually think of numbers in base 10
- But even though we write `int x = 23;` the computer stores `x` as a sequence of 1s and 0s
- Recall Lab 3:
  ```java
  public static String printInBinary(int n) {
      if (n <= 1)
          return "" + n%2;
      return printInBinary(n/2)+n%2;
  }
  ```
- `00000000 00000000 00000000 00010111`
Bitwise Operations

- We can use *bitwise* operations to manipulate the 1s and 0s in the binary representation
 - Bitwise ‘and’: &
 - Bitwise ‘or’: |
- Also useful: bit shifts
 - Bit shift left: <<
 - Bit shift right: >>
Given two integers a and b, the bitwise or expression $a \mid b$ returns an integer s.t.

- At each bit position, the result has a 1 if that bit position had a 1 in EITHER a OR b (or both)

3 \mid 6 = ?

Given two integers a and b, the bitwise and expression $a \& b$ returns an integer s.t.

- At each bit position, the result has a 1 if that bit position had a 1 in BOTH a AND b

3 \& 6 = ?
>> and <<

- Given two integers a and i, the expression $(a << i)$ returns $(a \times 2^i)$
 - Why? It shifts all bits left by i positions
 - $1 << 4 = ?$

- Given two integers a and i, the expression $(a >> i)$ returns $(a / 2^i)$
 - Why? It shifts all bits right by i positions
 - $1 >> 4 = ?$
 - $97 >> 3 = ?$ \((97 = 1100001)\)

- Be careful about shifting left and “overflow”!!!
Revisiting printInBinary(int n)

• How would we rewrite a recursive printInBinary using bit shifts and bitwise operations?

 public static String printInBinary(int n) {
 if (n <= 1) {
 return "" + n;
 }
 return printInBinary(n >> 1) + (n & 1);
 }
Revisiting printInBinary(int n)

• How would we write an iterative printInBinary using bit shifts and bitwise operations?

```java
public static String printInBinary(int n, int width) {
    String result = "";
    for(int i = 0; i < width; i++)
        if ((n & (1<<i)) == 0)
            result = 0 + result;
        else
            result = 1 + result;
    return result;
}
```
Lab 8: Two Towers

- **Goal**: given a set of blocks, iterate through all possible subsets to find the *best* set

- “Best” set produces the most balanced towers
- **Strategy**: create an iterator that uses the bits in a binary number to represent subsets
A block can either be in the set or out

If bit is a 1, in. If bit is a 0, out
Questions?

• We will write a “SubsetIterator” to enumerate all possible subsets of a Vector<E>
• We will use SubsetIterator to solve two problems
 • Two Towers
 • Identify all Subsequences of a String that are words
 • Use your LexiconTrie! (or an OrderedStructure)
Graphs Describe the World

- Transportation Networks
- Communication Networks
- Molecular structures
- Dependency structures
- Scheduling
- Matching
- Graphics Modeling
-

¹But don’t tell Tom Garrity---he’ll just be sad....
Nodes = subway stops; Edges = track between stops
Nodes = cities; Edges = rail lines connecting cities
Note: Connections in graph matter, not precise locations of nodes
Internet (~1998)
Word Game

WORD

Cord

FORD

LORD

WOAD

WOOD

WOLD

WARD

WORM

WORE

WORK

WORN

WORT
Nodes = courses; Edges = prerequisites ***
Wire-Frame Models
Def’n: An *undirected graph* $G = (V,E)$ consists of two sets

- V: the *vertices* of G, and E: the *edges* of G

- Each edge e in E is defined by a set of two vertices: its *incident vertices*. We write $e = \{u,v\}$ and say that u and v are *adjacent*.
Walking Along a Graph

• A walk from u to v in a graph $G = (V,E)$ is an alternating sequence of vertices and edges

 $u = v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k = v$

 such that each $e_i = \{v_i, v_{i+1}\}$ for $i = 1, \ldots, k$

• Note a walk starts and ends on a vertex

• If no edge appears more than once then the walk is called a path

• If no vertex appears more than once then the walk is a simple path
Walking In Circles

• A closed walk in a graph $G = (V,E)$ is a walk
 $$v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k$$
 such that each $v_0 = v_k$

• A circuit is a path where $v_0 = v_k$
 • No repeated edges

• A cycle is a simple path where $v_0 = v_k$
 • No repeated vertices

• The length of any of these is the number of edges in the sequence
Little Tiny Theorems

- If there is a walk from \(u \) to \(v \), then there is a walk from \(v \) to \(u \).
- If there is a walk from \(u \) to \(v \), then there is a path from \(u \) to \(v \) (and from \(v \) to \(u \)).
- If there is a path from \(u \) to \(v \), then there is a simple path from \(u \) to \(v \) (and \(v \) to \(u \)).
- Every circuit through \(v \) contains a cycle through \(v \).
- Not every closed walk through \(v \) contains a cycle through \(v \)! [Try to find an example!]