Lecture 25
Fall 2017
Instructor: B²
Last Time

- Binary search trees (Ch 14)
 - The *locate* method
 - Further Implementation
Today’s Outline

• Binary search trees (Ch 14)
 • Tree balancing to maintain small height
 • AVL Trees
 • Partial taxonomy of balanced tree species
 • Red-Black Trees
 • Splay Trees
But What About Height?

• Can we design a binary search tree that is always “shallow”?
• Yes! In many ways. Here’s one
• AVL trees
 • Named after its two inventors, G.M. Adelson-Velsky and E.M. Landis, who published a paper about AVL trees in 1962 called "An algorithm for the organization of information"
AVL Trees

• Balance Factor of a binary tree node:
 • height of right subtree minus height of left subtree.
 • A node with balance factor 1, 0, or -1 is considered balanced.
 • A node with any other balance factor is considered unbalanced and requires rebalancing the tree.

• Definition: An AVL Tree is a binary tree in which every node is balanced.
AVL Trees have $O(\log n)$ Height

Theorem: An AVL tree on n nodes has height $O(\log n)$

Proof idea

• Show that an AVL tree of height h has at least $\text{fib}(h)$ nodes (easy induction proof---try it!)
• Recall (HW): $\text{fib}(h) \geq (3/2)^h$ if $h \geq 10$
• So $n \geq (3/2)^h$ and thus $\log_{3/2} n \geq h$
 • Recall that for any $a, b > 0$, $\log_a n = \frac{\log_b n}{\log_b a}$
 • So $\log_a n$ and $\log_b n$ are Big-O of one another
• So h is $O(\log n)$
Single Rotation

Unbalanced trees can be rotated to achieve balance.
Single Right Rotation
AVL Tree Facts

- A tree that is AVL except at root, where root balance factor equals ± 2 can be rebalanced with at most 2 rotations.
- `add(v)` requires at most $O(\log n)$ balance factor changes and one (single or double) rotation to restore AVL structure.
- `remove(v)` requires at most $O(\log n)$ balance factor changes and (single or double) rotations to restore AVL structure.
- An AVL tree on n nodes has height $O(\log n)$.
AVL Trees: One of Many

There are many strategies for tree balancing to preserve $O(\log n)$ height, including

- AVL Trees: guaranteed $O(\log n)$ height
- Red-black trees: guaranteed $O(\log n)$ height
- B-trees (not binary): guaranteed $O(\log n)$ height
 - 2-3 trees, 2-3-4 trees, red-black 2-3-4 trees, ...
- Splay trees: *Amortized* $O(\log n)$ time operations
- Randomized trees: $O(\log n)$ expected height
A Red-Black Tree
(from Wikipedia.org)
Red-Black Trees

Red-Black trees, like AVL, guarantee shallowness

- Each node is colored red or black
- Coloring satisfies these rules
 - All empty trees are black
 - We consider them to be the leaves of the tree
 - Children of red nodes are black
 - All paths from a given node to its descendent leaves have the same number of black nodes
 - This is called the black height of the node
A Red-Black Tree
(from Wikipedia.org)
Red-Black Trees

The coloring rules lead to the following result

Proposition: No leaf has depth more than twice that of any other leaf.

This in turn can be used to show

Theorem: A Red-Black tree with \(n \) internal nodes has height satisfying

\[
 h \leq 2 \log(n + 1)
\]

• Note: The tree will have exactly \(n+1 \) (empty) leaves
 • since each internal node has two children
Red-Black Trees

Theorem: A Red-Black tree with n internal nodes has height satisfying $h \leq 2 \log(n + 1)$

Proof sketch: Note: we count empty tree nodes!

- If root is red, recolor it black.
- Now merge red children into (black) parents
 - Now $n' \leq n$ nodes and height $h' \geq h/2$
- New tree has all children with degree 2, 3, or 4
 - All leaves have depth exactly h' and there are $n+1$ leaves
 - So $n + 1 \geq 2^{h'}$, so $\log_2(n + 1) \geq h' \geq \frac{h}{2}$
- Thus $2 \log_2(n + 1) \geq h$

Corollary: R-B trees with n nodes have height $O(\log n)$
Red-Black Tree Insertion

Black empty leaves not drawn. 7 just added Black–height still 2.
Red-Black Tree Insertion

Black height still 2, color violation moved up
Red-Black Tree Insertion

Left rotation at 6, about to do right rotation
Red-Black Tree Insertion

Right rotation at 20, black height broken, need to recolor
Red-Black Tree Insertion

Color conditions restored, black-height restored.
Splay Trees

Splay trees are self-adjusting binary trees

- Each time a node is accessed, it is moved to root position via rotations
- No guarantee of balance (or shallow height)
- But good *amortized* performance

Theorem: Any set of m operations (add, remove, contains, get) on an n-node splay tree take at most $O(m \log n)$ time.
Splay Tree Rotations

Right Zig Rotation (left version too)

Right Zig-Zig Rotation (left version too)

Right Zig-Zag Rotation (left version too)
Splay Tree Iterator

- Even contains method changes splay tree shape
- This breaks the standard in-order iterator!
 - Because the stack is based on the shape of the tree
- Solution: Remove the stack from the iterator
- Observation: Given location of current node (node whose value is next to be returned), we can compute it’s (in-order)successor in next()
 - It’s either left-most leaf of right child of current, or
 - It’s closest ”left-ancestor” of current
 - Ancestor whose left child is also an ancestor of current
- Also, reset must “re-find” root
 - Idea: Hold a single “reference” node, use it to find root