Administrative Details

- Lab 8 today!
- You can work with a partner
- Bring a design to lab
- Try to take advantage of
 - Abstract base classes/inheritance
 - Data structures you’ve learned
Last Time

• Heapifying an array
 • Top-Down vs Bottom-up

• Heapsort

• Skew Heaps: A Mergeable Heap Structure
Today’s Outline

• Lab 8
• Binary search trees (Ch 14)
 • Overview
 • Definition
 • Some Applications
 • The *locate* method
 • Further Implementation
Improving on OrderedVector

- The OrderedVector class provides $O(\log n)$ time searching for a group of n comparable objects
 - `add()` and `remove()`, though, take $O(n)$ time in the worst case---and on average!
- Can we improve on those running times without sacrificing the $O(\log n)$ search time?
- Let’s find out....
Binary Trees and Orders

- Binary trees impose multiple orderings on their elements (pre-/in-/post-/level-orders).
- In particular, in-order traversal suggests a natural way to hold comparable items.
 - For each node v in tree:
 - All values in left subtree of v are $\leq v$.
 - All values in right subtree of v are $\geq v$.
- This leads us to...
Binary Search Trees

- Binary search trees maintain a *total* ordering among elements (assumes comparability)
- Definition: A BST T is either:
 - Empty
 - Has root r with subtrees T_L and T_R such that
 - All nodes in T_L have smaller value than r
 - All nodes in T_R have larger value than r
 - T_L and T_R are also BSTs
BST Observations

• The same data can be represented by many BST shapes
• Searching for a value in a BST takes time proportional to the height of the tree
 • Reminder: trees have height, nodes have depth
• Additions to a BST happen at nodes missing at least one child (a constraint!)
• Removing from a BST can involve any node
BST Operations

- BSTs will implement the OrderedStructure Interface
 - add(E item)
 - contains(E item)
 - get(E item)
 - remove(E item)
 - Runtime of above operations?
 - All O(h) – where h is the tree height
 - iterator()
 - This will provide an in-order traversal
The BST holds the following items:

- BinaryTree root: the root of the tree
- BinaryTree EMPTY: a static empty BinaryTree
 - To use for all empty nodes of tree
- int count: the number of nodes in the BST
- Comparator<E> ordering: for comparing nodes
 - Note: E must implement Comparable

Two constructors: One takes a Comparator
- Other creates a NaturalComparator
BST Implementation: locate

- Several methods search the tree
 - add, remove, contains
- We factor out common code: locate method
- `protected locate(BinaryTree<E> node, E v)`
 - Returns a `BinaryTree<E> n` in the subtree with root `node` such that either
 - `n` has its value equal to `v`, or
 - `v` is not in this subtree and `n` is the node whose child `v` should be
- How would we implement `locate()`?
BST Implementation: locate

```java
BinaryTree locate(BinaryTree root, E value)
{
    if (root’s value equals value) return root
    child ← child of root that should hold value
    if child is empty tree, return root
    // value not in subtree based at root
    else // keep looking
        return locate(child, value)
}
```
 BST Implementation: locate

- What about this line?
 \[\text{child} \leftarrow \text{child of root that should hold value} \]
- If the tree can have multiple nodes with the same value, then we need to be careful.
- Convention: During \textit{add} operation, only move to the right subtree if the value to be added is greater than the value at the node.
- We’ll look at \textit{add} later.
- Let’s look at \textit{locate} now....
protected BinaryTree<E> locate(BinaryTree<E> root, E value) {
 E rootValue = root.value();
 BinaryTree<E> child;

 // found at root: done
 if (rootValue.equals(value)) return root;

 // look left if less-than, right if greater-than
 if (ordering.compare(rootValue, value) < 0)
 child = root.right();
 else
 child = root.left();

 // no child there: not in tree, return this node, // else keep searching
 if (child.isEmpty()) return root;
 else
 return locate(child, value);
}
Other core BST methods

• locate(v) returns either a node containing v or a node where v can be added as a child

• locate() is used by
 • public boolean contains(E value)
 • public E get(E value)
 • public void add(E value)
 • Public void remove(E value)

• Some of these also use another utility method
 • protected BT predecessor(BT root)

• Let’s look at contains() first...
public boolean contains(E value) {
 if (root.isEmpty()) return false;

 BinaryTree<E> possibleLocation = locate(root, value);

 return value.equals(possibleLocation.value());
}
public void add(E value) {
 BinaryTree<E> newNode = new BinaryTree<E>(value, EMPTY, EMPTY);
 if (root.isEmpty()) root = newNode;
 else {
 BinaryTree<E> insertLocation = locate(root, value);
 E nodeValue = insertLocation.value();
 if (ordering.compare(nodeValue, value) < 0)
 insertLocation.setRight(newNode);
 else
 insertLocation.setLeft(newNode);
 }
 count++;
}

Problem: If repeated values are allowed, left subtree might not be empty when setLeft is called
Add: Repeated Nodes

Where would a new K be added? A new V?