Sample Final Exam

This is a closed book exam. You have 150* minutes to complete the exam. You may use the back of the preceding page for additional space if necessary, but be sure to mark your answers clearly.

Be sure to give yourself enough time to answer each question—the points should help you manage your time.

In some cases, there may be a variety of implementation choices. The most credit will be given to the most elegant, appropriate, and efficient solutions.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>Short Answer</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>Quotes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>StuckSort</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>Heaps</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>Binary Trees</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>Hashing</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>Time Complexity</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>Graphs</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>Data Structure Design</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I have neither given nor received aid on this examination.

Signature: ____________________________

Name: ____________________________

*In fact, 150 minutes is too little time! This is a test suite to help you prepare. The actual final will have fewer questions.
1. (10 points)
Show your work and justify answers where appropriate.

a. A tree with \(n \) elements is both a min-heap and a binary search tree. What does it look like?

(Each node has no left child.)

b. Which tree traversal would you use to print an expression tree in human-readable form?

in-order

c. Which tree traversal would you use to evaluate an expression tree?

post-order

d. We applied sorting methods primarily to arrays and vectors. Of the following sort algorithms, which are most appropriate to sort a SinglyLinkedList: insertion sort, selection sort, quicksort, merge sort?

merge sort, as it doesn't require random access.

e. When we rewrite a recursive algorithm to be iterative, we generally must introduce which kind of data structure to aid in simulating the recursion?

stack.
2. (10 points) \(\begin{array}{c} \text{Queues} \\
\text{Recall that the Queue interface may be implemented using an array to store the queue elements. Suppose }
\text{that two int values are used to keep track of the ends of the queue. We treat the array as circular: adding or }
\text{deleting an element may cause the head or tail to "wrap around" to the beginning of the array.}
\text{You are to provide a Java implementation of class CircularQueueArray by filling in the bod-
\text{ies of the methods below. Note that there is no instance variable which stored the number of}
\text{elements currently in the queue; you must compute this from the values of head and tail. You}
\text{may not add any additional instance variables.}
\end{array} \)

public class CircularQueueArray {
 // instance variables
 protected int head, tail;
 protected Object[] data;

 // constructor: build an empty queue of capacity n
 public CircularQueueArray(int n) {
 head = 0;
 tail = 0;
 data = new Object[n];
 for (int i = 0; i < n; i++)
 data[i] = null;
 }

 // pre: queue is not full
 // post: adds value to the queue
 public void enqueue(Object value) {
 data[tail] = value;
 tail = (tail + 1) % data.length;
 }
}
// pre: queue is not empty
// post: removes value from the head of the queue
public Object dequeue() {
 Object retVal = data[head];
 data[head] = null;
 head = (head + 1) % data.length;
 return retVal;
}

// post: return the number of elements in the queue
public int size() {
 if (head <= tail)
 return tail - head;
 return data.length - (head - tail);
}

// post: returns true iff queue is empty
public boolean isEmpty() {
 return head == tail || head == null;
}

// post: returns true iff queue is full
public boolean isFull() {
 return head == tail && head != null;
}
Stacks

Suppose you are given an iterator that will let you access a sequence of Comparable elements. You would like to sort them, but the only data structure available to you is an implementation of the Stack interface in the structures package (say, StackList). Because the elements are available only through an Iterator, so you must process each item as it is returned by the next() method of the Iterator. The sort method should return a stack containing the sorted elements, with the smallest at the top of the stack. Please fill in the body of the method.

```java
public static Stack StackSort(Iterator iter) {
    // pre: iter is an iterator over a structure containing Comparables
    // post: a Stack is returned with the elements sorted, smallest on top
    Stack<Comparable> retStack = new StackList<Comparable>();
    Stack<Comparable> tempStack = new StackList<Comparable>();

    while (iter.hasNext()) {
        Comparable cur = iter.next();
        // pop everything smaller than cur from retStack
        while (!retStack.empty()) {
            if (cur.compareTo(retStack.peek()) <= 0) { // found the spot
                tempStack.push(retStack.pop());
            } else {
                retStack.push(cur);
            }
        }
        tempStack.push(cur);

        while (!tempStack.empty()) {
            retStack.push(tempStack.pop());
        }
    }
    return retStack;
}
```
4. (10 points) \textbf{Heaps}

Recall the definition of a min-heap, a binary tree in which each node is no bigger than each of its descendants. For the rest of this question, we presume the Vector implementation of heaps (class VectorHeap). Consider the following tree, which is a min-heap.

![Min-heap diagram]

a. Show the order in which the elements would be stored in the Vector underlying our VectorHeap.

\[
\begin{array}{cccccccccccc}
1 & 2 & 13 & 5 & 3 & 89 & 4 & 21 & 233 & 34 & 89 & 144 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\end{array}
\]

b. Show the steps involved in adding the value 4 to the heap. Use drawings of the tree, not the vector.

![Insertion process diagram]

\textbf{Insert 4 at the right-most location of the deepest level and percolate up.}
c. Using the original tree (not the one with the 4 added), show the steps involved in removing the minimum value of the heap.

```
   4
  / \  
 13  89    34
 /  \
5   3
|   |
21  233 55 164
```

replace the root with the right-most node in the deepest level and percolate down

d. Why is the VectorHeap implementation of a priority queue better than one that uses a linked list implementation of regular queues, modified to keep all items in order by priority? Hint: Your answer should compare the complexities of the add and remove operations.

<table>
<thead>
<tr>
<th></th>
<th>add()</th>
<th>remove()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>Linkedlist</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

It takes O(n) to percolate down/up the tree as discussed in the review session.

i. Vector-Heap is better.
5. (10 points) Binary Trees

Suppose we have a BinaryTree that contains only Comparable values.

a. It is often useful to find the minimum and maximum values in the tree. Implement the method maximum as a member of class BinaryTree. Relevant sections of BinaryTree.java from the structures package are included on pages 14-16 to guide you. Your method should return the Comparable that is the maximum value in the tree. It should return null if called on an empty tree.

```java
public Comparable maximum() {
    // pre: the values in this tree are all Comparable
    // post: the maximum value in the tree is returned

    if (isEmpty())
        return null;

    Comparable maxLeft = left.maximum();
    Comparable maxRight = right.maximum();

    return max(maxLeft, maxRight, val()); // return the max of
                                             // the 3 values (ignoring
                                             // "null")
}
```

b. What is the worst-case complexity of maximum on a tree containing n values?

\(O(n)\)

c. What is the complexity of maximum on a full tree containing \(n\) values?

\(O(n)\)
d. Consider the following method, which I propose as a member of class BinaryTree:

```java
public boolean isBST() {
    // post: returns true if the tree rooted here is a binary search tree
    if (this == EMPTY) return true;
    return left().isBST() && right().isBST();
}
```

This method will not always return the correct value. Explain why, then provide a correct method. You may use min() and max() from part (a), as well as any other methods of BinaryTree.

```java
public boolean isBST() {
    if (this == EMPTY) return true;

    return left().isBST() && right().isBST() &&
           value().compareTo(left().val()) > 0 &&
           value().compareTo(right().val()) < 0;
}
```

e. In class BinaryTree, why is the setLeft() method public, but the setParent() method is protected?

```
In the current implementation, setParent() should only be called by setLeft() or setRight() (i.e. when we are setting a child).

Otherwise, we may break the tree structure by setting node A as the parent of node B without setting node B as a child of node A.
```
public class BinaryTree {
 protected Object val; // value associated with node
 protected BinaryTree parent; // parent of node
 protected BinaryTree left; // left child of node
 protected BinaryTree right; // right child of node
 // The unique empty node
 public static final BinaryTree EMPTY = new BinaryTree();

 // A one-time constructor, for constructing empty trees.
 private BinaryTree() {
 val = null; parent = null; left = right = this;
 }

 // Constructs a tree node with no children. Value of the node
 // is provided by the user
 public BinaryTree(Object value) {
 val = value; parent = null; left = right = EMPTY;
 }

 // Constructs a tree node with no children. Value of the node
 // and subtrees are provided by the user
 public BinaryTree(Object value, BinaryTree left, BinaryTree right) {
 this(value);
 setLeft(left);
 setRight(right);
 }

 // Get left subtree of current node
 public BinaryTree left() {
 return left;
 }

 // Get right subtree of current node
 public BinaryTree right() {
 return right;
 }

 // Get reference to parent of this node
 public BinaryTree parent() {
 return parent;
 }

 // Update the left subtree of this node. Parent of the left subtree
 // is updated consistently. Existing subtree is detached
 public void setLeft(BinaryTree newLeft) {
 if (isEmpty()) return;
 if (left.parent() == this) left.setParent(null);
 left = newLeft;
 left.setParent(this);
 }

 // Update the right subtree of this node. Parent of the right subtree
 // is updated consistently. Existing subtree is detached
 public void setRight(BinaryTree newRight) {
 if (isEmpty()) return;
 if (right.parent() == this) right.setParent(null);
 right = newRight;
 right.setParent(this);
 }
}
// Update the parent of this node
protected void setParent(BinaryTree newParent) {
 parent = newParent;
}

// Returns the number of descendants of node
public int size() {
 if (this == EMPTY) return 0;
 return left().size() + right().size() + 1;
}

// Returns node's root. This contains a
public BinaryTree root() {
 if (parent() == null) return this;
 else return parent().root();
}

// Returns height of node in tree. Height is maximum path
// length to descendant
public int height() {
 if (this == EMPTY) return -1;
 return 1 + Math.max(left().height(), right().height());
}

// Compute the depth of a node. The depth is the path length.
// From node to root
public int depth() {
 if (parent() == null) return 0;
 return 1 + parent().depth();
}

// Returns true if tree is full. A tree is full if adding a node
// to tree would necessarily increase its height
public boolean isFull() {
 if (this == EMPTY) return true;
 if (left().height() < right().height()) return false;
 return left().isFull() && right().isFull();
}

// Returns true if tree is empty.
public boolean isEmpty() {
 return this == EMPTY;
}

// Return whether tree is complete. A complete tree has minimal height
// and any holes in tree would appear in last level to right.
public boolean isComplete() {
 int leftHeight, rightHeight;
 boolean leftIsFull, rightIsFull, leftIsComplete, rightIsComplete;
 if (this == EMPTY) return true;
 leftHeight = left().height();
 rightHeight = right().height();
 leftIsFull = left().isFull();
 rightIsFull = right().isFull();
 leftIsComplete = left().isComplete();
 rightIsComplete = right().isComplete();
 // case 1: left is full, right is complete, heights same
 if (leftIsFull && rightIsComplete &&

(leftHeight == rightHeight)) return true;
 // case 2: left is complete, right is full, heights differ
 if (leftIsComplete && rightIsFull &&
 (leftHeight == (rightHeight + 1))) return true;
 return false;
}

// Return true iff the tree is height balanced. A tree in height
// balanced if at every node the difference in heights of subtrees is
// no greater than one.
public boolean isBalanced() {
 if (this == EMPTY) return true;
 return Math.abs(left().height() - right().height()) <= 1 &&
 left().isBalanced() && right().isBalanced();
}

// Return value associated with this node
public Object value() {
 return val;
}
6. (10 points) Hashing

a. What is meant by the "load factor" of a hash table?

 ratio of the number of variables stored to the number of slots/buckets

 (Bailey pg 379)

b. We take care to make sure our hash functions return the same hash code for any two equivalent (by the equals() method) objects. Why?

 (Bailey pg 386)

 We cannot have duplicate keys map to different places within the same hash table. Otherwise, contains(key) would fail, get(key) would fail, and put(key, value) might not detect duplicate keys.

c. We also said that a good size for a hash table would be a prime or "almost prime" number. Why?

 We store Objects in a hash table by using modular arithmetic to convert a hashcode to a bucket: \(\text{hash(key)} \mod \text{array.length} \)

 If we don't use a prime array length, multiples of an index will still collide if we resize by a process like doubling.

d. A hash table with ordered linear probing maintains an order among keys considered during the rehashing process. When the keys are encountered, say, in increasing order, the performance of a failed lookup approaches that of a successful search. Describe how a key might be inserted into the ordered sequence of values that compete for the same initial table entry.

High level idea: When we detect a collision, we will shift to make room within a cluster of collided objects instead of scanning to the end of a cluster. We insert a key within its cluster (i.e., all keys that belong in the same bucket) at the position it would fall if all collided objects were sorted.
e. Is the hash table constructed using ordered linear probing as described in part (d) really just an ordered vector? Why or why not?

 No. A sorted vector is globally sorted by keys. A hash table with ordered linear probing only sorts within runs of collided objects. Keys that are consecutive in a global ordering might not have colliding hash codes.

f. One means of potentially reducing the complexity of computing the hash code for Strings is to compute it once—when the String is constructed. Future calls to hashCode() would return this precomputed value. Since Java Strings are immutable, that is, they cannot change once constructed, this could work. Do you think this is a good idea? Why or why not?

 Probably not.

 Most strings are created and used without ever being stored in a hash table.

 If we compute the hashcode whenever we create a string, all strings will pay the cost.
7. (10 points) Time Complexity

Suppose you are given n lists, each of which is of size a and each of which is sorted in increasing order. We wish to merge these lists into a single sorted list L, with all n^2 elements. For each algorithm below, determine its time complexity (Big O) and justify your result.

a. At each step, examine the smallest element from each list; take the smallest of those elements, remove it from its list and add it to the end of L. Repeat until all input lists are empty.

n comparisons to pick one element, n^2 elements

$$n \cdot n^2 = O(n^3)$$

b. Merge the lists in pairs, obtaining $\frac{n}{2}$ lists of size $2n$. Repeat, obtaining $\frac{n}{4}$ lists of size $4n$, and so on, until one list remains.

$\log_2 n$ merges in total are required, and we will say merging k items has cost $O(k)$.

<table>
<thead>
<tr>
<th>First round of merges</th>
<th>Items</th>
<th>Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2n$</td>
<td>$\frac{n}{2}$</td>
</tr>
<tr>
<td>Second round</td>
<td>$4n$</td>
<td>$\frac{n}{4}$</td>
</tr>
<tr>
<td>Third round</td>
<td>$8n$</td>
<td>$\frac{n}{8}$</td>
</tr>
</tbody>
</table>

:

i^{th} round

$$2^n \cdot \frac{n}{2^i} = n^2$$

$$O(\log_2(n) n^2)$$
b. Consider the following definition of a graph.

Def: A graph \(G \) consists of a set \(V \), whose members are called the vertices of \(G \), together with a set \(E \), of edges, which are pairs of distinct vertices from \(V \) (no edges from a vertex back to itself).

Prove by induction that an undirected graph \(G \) with \(n \) vertices has at most \(n(n-1)/2 \) edges.

Base case: 1 vertex has no edges.

\[
n(n-1)/2 = 1(1-1)/2 = 0 \checkmark
\]

\[
0(0-1)/2 = 0 \checkmark
\]

Inductive Hypothesis: Assume that for \(0 \) to \(n \) vertices, there are at most \(n(n-1)/2 \) vertices.

Suppose we have any graph with \(n+1 \) vertices. The vertex with the most edges can be connected to all other vertices, so it has at most \(n \) edges. If we remove any one vertex, we have a graph with \(n \) vertices, and by our inductive hypothesis, there are at most \(n(n-1)/2 \) edges.

If we add the vertex back, we can have at most

\[
n + n(n-1)/2 = 2n + n^2 - n = n^2 + n = n(n+1)/2 \checkmark
\]

(We wanted to show \(\frac{(n+1)(n+1-1)}{2} = \frac{n(n+1)}{2} \))