
Computer Science CS136 (Fall 2021)

Duane Bailey & Aaron Williams

Laboratory 8

Darwin!|a lab by Steve Freund

Lab 9
Part 1 Due: 23 April
Part 2 Due: 30 April

Handout 11
CSCI 136: Spring, 2007

16 April

Darwin

1 Short Answers

Complete the following problems from the book and hand them in at the start of lab.

• Problem 12.1

• Problem 12.20

2 Lab

In this assignment, your job is to build a simulator for a game called Darwin invented by Nick Parlante.
The assignment has several purposes:

1. To give you more practice writing large, multi-class programs.

1

Darwin's World Map

In this assignment, your job is to build a simulator for a game called Darwin (invented by Nick Parlante).

The assignment has several general motivations:

1. We need more practice writing large, multi-class programs.

2. Darwin is a good example of modular decomposition and information hiding. The entire program

is broken down into a series of classes that can be developed and tested independently, without

revealing representational details.

3. Darwin poses a problem that is algorithmically interesting in its own right.

Most of this project is due in a week, just before Thanksgiving break.

The Darwin World
The Darwin program simulates a two-dimensional world divided up into small squares that is populated

by a number of creatures . Each of the creatures lives in one of the squares, faces in one of the major

compass directions (North, East, South, or West) and belongs to a particular species that determines how

that creature behaves. One possible world is shown above.

That sample world is populated with twenty creatures, ten of a species called Flytrap and ten of a

species called Rover. The species of the creature is identi�ed by the �rst letter in its name. The creature

faces in the direction indicated by its pointy nose. The behavior of each creature|you can think of it as

a small robot|is controlled by a program that is species speci�c. Thus, all of the Rovers behave in the

same way. The behaviors of di�erent species, however, are probably di�erent.

As the simulation proceeds, every creature gets a turn. On its turn, a creature executes a short piece of

its program that allows it to look forward and then take some action . The possible actions are (1) moving

forward, (2) turning left or right, and (3) infecting the creature in front of it. (Infection transforms the

victim into a member of the infecting species.) After it acts, the turn for that creature ends, and some

other creature gets its turn. When every creature has had a turn, time moves forward one step and the

process begins all over again with each creature taking another turn, and so on. The goal of the game is

survive, as a species.

Species Programming
In order to know what to do on any particular turn, a creature executes some number of instructions

in an internal program speci�c to its species. For example, the program for the Flytrap species is shown

below:

Step Instruction Comment

1 ifenemy 4 If there is an enemy ahead, go to step 4

2 left Turn left

3 go 1 Go back to step 1

4 infect Infect the adjacent creature

5 go 1 Go back to step 1

The step numbers are not part of the actual program, but are included here to make it easier to understand

the program. On its turn, a Flytrap �rst checks to see if it is facing an enemy creature in the adjacent

square. If so, the program jumps ahead to step 4 and infects the hapless creature that happened to be

there. If not, the program instead goes on to step 2, in which it simply turns left. In either case, the next

instruction causes the program to loop from the beginning.

All creatures start their programs at step 1 and ordinarily continue with each new instruction in

sequence, although this order can be changed by certain instructions in the program. Each creature is

responsible for remembering the number of the next step to be executed. The valid Darwin instructions

are:

hop The creature moves forward as long as the square it is facing is empty. If moving forward would put

the creature outside the boundaries of the world or would cause it to land on top of another creature,

the hop instruction does nothing.

left The creature turns left 90 degrees to face in a new direction.

right The creature turns right 90 degrees.

infect n If the square immediately in front of this creature is occupied by a creature of a di�erent species

(an `enemy') that creature is infected to become the same as the infecting species. When a creature

is infected, it keeps its position and orientation, but changes its internal species indicator and begins

executing the same program as the infecting creature, starting at step n of the program. The number

n is optional. If it is missing, the infected creature should start at step 1.

ifempty n If the square in front of the creature is unoccupied, the program continues from step n. If that

square is occupied or outside the world boundary, continue with the instruction that follows.

ifwall n If the creature is facing and is at a world boundary (which we imagine as consisting of a huge

wall) jump to step n; otherwise, continue with the next instruction.

ifsame n If the square the creature is facing is occupied by a creature of the same species, jump to step

n; otherwise, continue with the next instruction.

ifenemy n If the square the creature is facing is occupied by a creature of another species, jump to step

n; otherwise, go on with the next instruction.

ifrandom n In order to make it possible to write some creatures capable of exercising what might be

called the rudiments of `free will,' this instruction jumps to step n half the time and continues with

the next instruction the other half of the time.

go n This instruction always jumps to step n, independent of any condition.

A creature may execute any number of if or go instructions without relinquishing its turn. The turn

ends only when the program executes one of the \action" instructions hop, left, right, or infect. On

subsequent turns, the program starts up where it left o�.

The program for each species is stored in a �le in the subfolder named Creatures in the assignment

folder. Each �le in that folder consists of the species name and color, followed by the steps in the species

program, in order. The program ends with a line containing only a period (\."). Any comments appear

after the program. For example, the program �le for the Flytrap creature could look like this:

Flytrap

magenta

ifenemy 4

left go 1

infect go 1

.

The flytrap sits in one place and spins.

It infects anything which comes in front.

Flytraps do well when they clump.

There are several pre-supplied creature �les:

Food This creature spins in a square but never infects anything. Its only purpose is to serve as food

for other creatures. As Nick Parlante explains, \the life of the Food creature is so boring that its

only hope in life is to be eaten by something else so that it gets reincarnated as something more

interesting."

Hop This creature just keeps hopping forward until it reaches a wall. Not very interesting, but it is useful

to see if your program is working.

Flytrap This creature spins in one square, infecting any enemy creature it sees.

Rover This creature walks in straight lines until it is blocked, infecting any enemy creature it sees. If it

can't move forward, it turns.

You can also create your own creatures by creating a description �le in the format described above.

Your Assignment
Write the Darwin simulator. The program is large enough that it is broken down into a number of

separate classes that work together to solve the complete problem. You are responsible for implementing

the following classes:

Darwin This class contains the main program, which is responsible for setting up the world, populating

it with creatures, and running the main loop of the simulation that gives each creature a turn. The

details of these operations are generally handled by the other modules. New creatures should be

created in random empty locations, pointing in random directions.

Species This class represents a species, and provides operations for reading in a species description from

a �le and for working with the programs that each creature executes.

Creature Objects of this class represent individual creatures, along with operations for creating new

creatures and for taking a turn.

World This class contains an abstraction for a two-dimensional world, into which you can place the

creatures.

Skeletons of these classes are provided in the starter folder. You should not need to add any additional

public methods to these classes (although you may if you think it improves the design). You will, however,

probably want to add additional protected methods as you implement the classes. In addition, we provide

you with three helper classes that you should use without modi�cation:

Instruction This simple class represents one instruction out of the instruction set of the Species.

Position This class represents (x, y) points in the world and constants for compass directions. This is

similar to what we used in the our maze-related classes.

WorldMap This class handles all of the graphics for the simulation.

This Week’s Tasks
Here is a suggested course of action to implement Darwin:

1. On the CS machine in front of you , make sure you have a cs136 directory and clone your lab8

repository as usual:

cd ~/cs136

git clone https://evolene.cs.williams.edu/cs136-labs/22xyz3/lab8.git

replacing 22xyz3 with your CS username. This will create the directory ~/cs136/lab8.

2. You can use the command darwin on the local computer1 to run Steve's sample solution. This will

give you a chance to see how the program is supposed to behave. Run it with a command line like

1Because this program opens a graphics window, it is di�cult to run through ssh. During lab, we suggest you clone the

repository on the Mac Lab computer you're sitting in front of. In the jar subdirectory, we've included a copy of bailey.jar

if you wish to add the structure5 package to your CLASSPATH with the unix command:

export CLASSPATH=.:$HOME/cs136/lab8/jar/bailey.jar:$CLASSPATH

This command can be made permanent by adding it to the �le .zprofile in your home directory.

./darwin Hop.txt Rover.txt

while inside the lab folder.

3. Write the World class. This should be straight-forward if you use a Matrix object or a 2-dimensional

array to represent the world. Test this class thoroughly before proceeding. Write a main

method in the World class and verify that all of the methods work.

4. Write the Species class. The �rst step will be parsing the program �le and storing it in the Species.

Note that the �rst instruction of a program is at address 1, not 0. Test this class thoroughly

before proceeding. Write a main method in the Species class and verify that all of the

methods work.

5. Fill in the basic details of Creature class. Implement only enough to create creatures and have them

display themselves on the world map. Implement takeOneTurn for the simple instructions (left,

right, go, and hop). Test the basic Creature thoroughly before proceeding. Write a main

method in that class and verify that all of the methods work.

6. Begin to implement the simulator in the Darwin class. Start by reading a single species and creating

one creature of that species. Write a loop that lets the single creature take 10 or 20 turns.

7. Go back to Creature and implement more of the takeOneTurn method. Test as you go|implement

an instruction or two, and verify that a Creature will behave correctly, using your partially written

Darwin class.

8. Finish up the Darwin class. Populate the board with creatures of di�erent species and make your

main simulation loop iterate over the creatures giving each a turn. The class should create creatures

for the species given as command line arguments to the program when you run it. See Darwin.java

for more details. Run the simulation for several hundred iterations or so. You can always stop the

program by pressing control-C in the terminal window or closing the Darwin window.

9. Finally, �nish testing the implementation by making sure that the creatures interact with each other

correctly. Test ifenemy, infect, etc.

Deliverables

1. Turn in the following �ve �les before Thanksgiving:

(a) Final version of World.java

(b) Final version of Species.java

(c) Creature.java

(d) Darwin.java

(e) A Species of your own design, in the Creatures directory, a �le called Creature.txt (inter-

nally, of course, it can be named whatever you wish). It can be as simple or as complex as you

like. When we return from Thanksgiving, we will pit your creatures against each other to watch

them battle for survival. Fabulous door prizes will be awarded. We will run all simulations on

a 15x15 grid populated with 10 creatures from each of 4 species.

?

