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Laboratory 6

The Two Towers Problem

Suppose that we are given n uniquely sized cubic blocks and that each block has a face area between

1 and n. Build two towers by stacking these blocks. How close can we get the heights of the two towers?

The following two towers built by stacking 15 blocks, for example, di�er in height by only 129 millionths

of an inch (each unit is one-tenth of an inch):
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Still, this stacking is only the second-best solution! To �nd the best stacking, we could consider all the

possible con�gurations.

We do know one thing: the total height of the two towers is computed by summing the heights of all

the blocks:

h =
n∑
i=1

√
i

If we consider all the subsets of the n blocks, we can think of the subset as the set of blocks that make up,

say, the left tower. We need only keep track of that subset that comes closest to h/2 without exceeding it.

In this lab, we will represent a set of n distinct objects by a Vector, and we will construct an Iterator

that returns each of the 2n subsets.

Discussion. The trick to understanding how to generate a subset of n values from a Vector is to �rst

consider how to generate a subset of indices of elements from 0 to n − 1. Once this simpler problem is

solved, we can use the indices to help us build a Vector (or subset) of values identi�ed by the indices.

There are exactly 2n subsets of values 0 to n− 1. We can see this by imagining that a coin is tossed n

times|once for each value|and the value is added to the subset if the coin ip shows a head. Since there

are 2× 2× · · · × 2 = 2n di�erent sequences of coin tosses, there are 2n di�erent sets.

We can also think of the coin tosses as determining the place values for n di�erent digits in a binary

number. The 2n di�erent sequences generate binary numbers in the range 0 through 2n−1. Given this, we

can see a line of attack: count from 0 to 2n−1 and use the binary digits (bits) of the number to determine

which of the original values of the Vector are to be included in a subset.

Computer scientists work with binary numbers frequently, so there are a number of useful things to

remember:

� An int type is represented by 32 bits. A long is represented by 64 bits. For maximum exibility, it

would be useful to use long integers to represent sets of up to 64 elements.



� The arithmetic shift operator (<<) can be used to quickly compute powers of 2. The value 2i can

be computed by shifting a unit bit (1) i places to the left. In Java we write this 1<<i. This works

only for nonnegative, integral powers. (For long integers, use 1L<<i.)

� The bitwise and of two integers can be used to determine the value of a single bit in a number's

binary representation. To retrieve bit i of an integer m we need only compute m & (1<<i). The

result is either 0, if bit i is not set, or non-zero if it is set.

This Week’s Tasks. Armed with this information, the process of generating subsets is fairly straightfor-

ward.

1. Clone your lab6 repository:

cd ~/cs136

git clone https://evolene.cs.williams.edu/cs136-labs/22xyz3/lab6.git

replacing 22xyz3 with your CS username. This will create the directory ~/cs136/lab6. Here, we'll

focus on modifying �les describing two iterators: the SubsetIterator and RulerIterator.

2. Construct a new extension to the AbstractIterator class called SubsetIterator. (By extending

the AbstractIterator we support the Iterable and Iterator interfaces.) This new class should

have a constructor that takes a Vector of objects as its sole argument. The objects represent the

universe of values used in this problem. Subsets of this Vector will be returned as the result of

calling the Iterator's next method. Think carefully about how this type is parameterized.

3. Internally, a long value is used to represent the current subset. This value increases from 0 (the

empty set) to 2n − 1 (the entire set of values) as the SubsetIterator progresses. Write a reset

method that resets the subset counter to its initial state, 0.

4. Write a hasNext method that returns true if the current value is a reasonable representation of a

subset. You should be able to call hasNext without changing the state of the iterator.

5. Write a get method that constructs a Vector of values that are part of the current subset. If bit i

of the current counter is 1, element i of the Vector is included in the resulting subset Vector. This

is the workhorse method of the SubsetIterator class. Take your time and think about how you

might test if this method works.

6. Write a next method. It returns a Vector of values in the current subset before incrementing the

counter. As with many of the AbstractIterator classes we have written, you will want to call get

at some point, just to leverage all the hard word you've already done.

7. For an Iterator you would normally have to write a remove method. If you extend the Abstract-

Iterator class, this method is provided and will do nothing (this is reasonable).

You can now test your new SubsetIterator by having it print all the subsets of a Vector of values.

Remember to keep the Vector small. If the original values are all distinct, the subsets should all di�er by

value as well.

To solve the two-towers problem, write a main method in the SubsetIterator class that inserts the

values
√
1,
√
2,. . . ,

√
n (use Math.sqrt) as Double objects into a Vector. A SubsetIterator is then used



to construct 2n subsets of these values. The values of each subset are summed, and the sum that comes

closest to, but does not exceed,1 the value h/2 is remembered. After all the subsets have been considered,

have your program print the best solution it encountered along the way.

Find the best solution to the 15-block problem and include that solution in comments near your main

method.

If you've made it this far, then you've earned 9 points. And: you've solved a very challenging prob-

lem...well done!

Extension.

Our strategy for solving the Two Towers Problem can be categorized as an exhaustive search or as a

generate and test algorithm, meaning that we create every possible solution to the problem, evaluate it,

and keep the best one. This approach is often dismissively described as brute force, with the implication

that raw computing power is being leveraged rather than creativity or intelligence. In reality, exhaustive

search can be interesting and challenging, especially if your goal is to do it as e�ciently as possible.

Let's begin by considering the amount of time we currently spend processing|that is generating and

evaluating|each possible solution to an n-block Two Towers Problem:

1. We spend O(n)-time generating each possible solution. It takes n operations to convert an integer

into a subset of the n blocks.

2. We spend an additional O(n)-time evaluating each possible solution: we must iterate over as many

as n elements of the subset to compute the height of the associated tower. (With care you can see

that these subsets contain, on average, n
2 , elements.)

As a result, we spend a total of O(n+ n)-time, or simply O(n)-time, to process each possible solution.

In this extension, we will focus on the following goal:

Process each possible solution in O(1)-time.

In other words, we will aim to generate the next subset in O(1)-time, and evaluate it in O(1)-time. To

illustrate what needs to be done, and what needs to be avoided, consider the following table. It contains

three successive steps using the SubsetIterator strategy to solve the 6-block problem. They correspond

to the n = 6 bit integers, 14, 15, and 16:

integer binary string subset height calculation

14 001110 {4, 3, 2}
√
4+
√
3+
√
2

15 001111 {4, 3, 2, 1}
√
4+
√
3+
√
2+
√
1

16 010000 {5}
√
5

First consider the integers 14 and 15. Notice that the binary strings, subsets, and height calculations are

all similar to each other for these two integers. Speci�cally, the two binary strings di�er in one bit, which

means that the subsets di�er in one element, and so the height calculations di�er in one value. As a result,

we can transition from the �rst row of the table to the second row of the table in O(1)-time. We would

simply modify the binary string by complementing one bit, and update the height calculation by adding

1The reason we're only interested in subsets that do not exceed h/2 is because each con�guration is represented twice:

once with the subset of blocks on the left , and another with the same subset on the right. Without loss of generality, we're

interested in solutions where the left tower is shorter than the right.



one value. There are still issues to be sorted out | for example, we don't want to spend O(n)-time �guring

out that we can perform the transition in O(1)-time | but hopefully the basic idea is clear.

The most pressing issue is that our current strategy doesn't always have such smooth transitions. For

example, last two rows of the table illustrate that successive integers can yield wildly di�erent binary

strings, subsets, and height calculations. More generally, our current strategy has many instances in which

O(n) changes are needed. In particular, the integer 2n−1 − 1 has binary representation 011 . . . 1, while

the next integer 2n−1 has binary representation 100 . . . 0, and so literally everything has changed. This

extreme example only occurs once, but smaller \roll-overs" requiring O(n)-time occur frequently.

For the reasons outlined above, we'll need a new strategy for generating the possible solutions. Our

new strategy is based on a Gray code,2 and the ruler sequence3 that generates it. The Gray code is an

ordering of the n-bit binary strings in which successive strings di�er in only a single bit, and the ruler

sequence provides the bit indices that are changed (with 0-based indices). Below are illustrations for n = 3.

ruler sequence 0 1 0 2 0 1 0

Gray code (b2b1b0) 000 001 011 010 110 111 101 100

This order of binary strings may seem strange, but you should be able to verify that every string is

included, and that each is obtained from the previous by changing the bit speci�ed by the ruler sequence.

For example, 010 is followed by 110 by changing bit b2.

We have provided a �le RulerIterator.java that includes an iterator for generating each value in

the ruler sequence in O(1)-time. As with your testing of SubsetIterator, use the main method of the

RulerIterator to identify the best con�guration of blocks for the 15-block Two Towers Problem:

1. Do not write any new classes. Instead, use the indices returned by the RulerIterator to modify

your current subset in constant (O(1)) time (i.e. without loops).

2. Each time you modify the subset, make sure you update the current height. Do not recompute the

height from scratch, but carefully update it based on the value returned from the RulerIterator.

Again: no loops!

3. In the spirit of simplicity, feel free to keep track of only the minimum di�erence in height seen so far.

Each time you update this minimum di�erence, neatly print the di�erence and the corresponding

subset of block numbers. As your program searches the space, you should see better and better

solutions. The last one printed will be the best.

4. Verify that the RulerIterator approach gives the same answer as the SubsetIterator approach.

If you've made it this far, congratuations: you've solved this challenging problem in two interesting ways!

Submitting Your Work. To get credit for this week's lab make sure that you've added, committed, and

pushed your SubsetIterator.java and honorcode.txt (containing your signature). If you did any work

on the extension, make sure you add, commit, and push your changes to RulerIterator.java. Recall

that git status and git push will help to verify that everything is up-to-date.

?

2The invention of Gray codes is attributed to Frank Gray and his colleagues at Bell Labs in the 1940's.
3You can read more about the ruler sequence at the Online Encyclopedia of Integer Sequences: https://oeis.org/A007814.


