
Computer Science CS136 (Fall 2021)

Duane Bailey & Aaron Williams

Laboratory 4

Sorts of Pets

Objective. To gain experience using Comparators and lambdas to specify sorting and �ltering criteria.

Discussion. This week we'll extend the Vector class in the structure5 package to include a sort method

and a filtermethod. The result will be called a SortingVector. In most ways, a SortingVector acts just

like a Vector. The additional sort method will allow us to order data in-place . For the most
exibility,

we'll allow the user of the sort method to specify a comparator|an object that simply wraps a function

compare(a,b) that can be used to impose relative order on the pairs of objects (a and b) encountered.

The filter method will allow us to construct a new vector that contains only the objects that meet a

particular condition. The condition is determined by a predicate|again, an object that simply wraps the

function test(item) that is used to evaluate whether item should be copied to the new vector or �ltered

out.

To test our new, more powerful SortingVector, we'd like to write a few applications that allow us

to answer questions about objects stored in a database. In particular, we have downloaded a database

of pet registrations from Seattle1. The database is stored in a simple comma-separated values (CSV)

format where each line describes one registered pet. (You may have seen these CSV �les before: they're

a common format for storing the rows of data from a spreadsheet.) Internally, each pet will be described

by an object from the Pet class. We'll read the pet descriptions from the database and build a vector of

Pets. We'll design the Pet class to store data about a particular pet, but they won't have any \natural"

ordering; we'll sort and �lter Pet objects based on code we write later. We have several (silly) questions

we'd like to ask about these pets; we think they can all be answered by a combination of sort and filter

operations that perform question-speci�c orderings and tests on our Pet-vectors.

Lambda Specification. An important aspect of this lab is the speci�cation of small bits of code that

determine, for example, how we compare two Pets. These \bits" are really just functions that are speci�ed

by methods of a dedicated \wrapper" object. When we want to specify the way to compare two items (say

Pets), we use a Comparator<Pet>2 object's compare(Pet a, Pet b) method. When we want to provide

a method for testing a Pet condition, we specify a test(Pet p) method in a Predicate<Pet>3 object.

The SortingVector<E>'s sort method takes a Comparator<E>:

public static sort(Comparator<E> c)

When we call this method we must specify c. Suppose we have a SortingVector<String> and want to

build a Comparator<String> that compares String objects based on length. We could use this de�nition,

stored in a �le called StrLenComp.java:

import java.util.Comparator;

public class StrLenComp extends Comparator<String> {

public int compare(String a, String b) {

return a.length()-b.length();

1https://www.kaggle.com/aaronschlegel/seattle-pet-licenses
2java.util.Comparator
3java.util.function.Predicate

}

}

The compare(a,b) method (like the a.compareTo(b) method for Strings and similar classes that im-

plement the Comparable interface) returns a value that is less-than, equal-to, or greater-than zero if a is,

repectively, less-than, equal-to, or greater-than b. If you think about this a bit, the di�erence between a

and b does just this.

Now, in calling a sort that would make use of this de�nition, we would use the code

v.sort(new StrLenComp());

This \new" object is simply a mechanism for delivering the compare(a,b) method to the sort routine.

This is pretty wild: we're treating a bit of code|to be used later|as though it were data . This is our

very �rst step along the road to functional programming .

Beginning in Java 8, when we reference an object from a class that has one abstract method declared

(in our example, here, java.util.Comparator<E>, has a unique missing method, compare(E a,E b)),

we can provide the missing code in a compressed description called a lambda speci�cation .4 Here's an

anonymous one-time lambda de�nition that is equivalent to the StrLenComp class de�nition we gave above:

v.sort((String a, String b) -> {

int al = a.length();

int bl = b.length();

return al-bl;

});

This syntax is specifying the body of the routine with the signature speci�ed|two String objects, a and

b. The arrow (->) is used to signal a lambda speci�cation and is followed by a basic block of Java code

with a return. Since the compare method must return an int, the value al-bl is appropriate.

It is hard to overstate what is happening here: at the point where a Comparator<String> is needed,

we pass sort a snippet of code as the actual parameter . How is the code converted to a Compara-

tor instance? The compiler writes an anonymous extension of the Comparator<String> class, with the

indicated code as the body of the unique abstract method, and an instance of that class is constructed

and passed to the sort method. Once the sort method is �nished, the class de�nition and its object are

recycled. Wow.

When the basic block can be written as a single return statement we can simplify it further: just

specify the value returned:

v.sort((String a, String b) -> (a.length()-b.length()));

The parentheses around the return value are unnecessary, but we �nd it helps with readability.

In this lab, we'll make use of one other abstract class, the Predicate<E>.5 The purpose of this class

is to support the speci�cation of functions that test a condition of the type E. If you browse the interface

for this class you will see one abstract method:

4If you've used Python, you've probably learned about lambda syntax for specifying one-o� functions. This is Java's tardy

but concise attempt at the same thing. The use of the term lambda is an homage to Alonzo Church's important formulation

of the Lambda Calculus , a mathematical study of function-based computation long before we had physical computers.
5java.util.function.Predicate. The package java.util.function is dedicated to classes that support lambda speci�-

cations of various forms.

public abstract boolean test(E);

The test(E value) method takes a single value and returns true or false depending on the code

ultimately provided in the lambda speci�cation. We'll use this to help us specify how to select or �lter

objects that will form a new SortingVector. Obviously, there are lots of ways to select elements from a

vector|depending on the application|so specifying a last-minute or one-o� lambda expression is ideal

for this purpose.

This Week’s Tasks. Here is what we expect you to do, this week:

1. Clone your lab4 repository:

cd ~/cs136

git clone https://evolene.cs.williams.edu/cs136-labs/22xyz3/lab4.git

replacing 22xyz3 with your CS username. This will create a subdirectory, lab4 in your cs136

directory. Looking around this directory, you'll see the following �les:

SortingVector.java the basis for your sort-augmented Vector

InsertionSort.java an example of insertion sort

SeattlePets.csv the database of Seattle pet registrations, in CSV form

CSVReader.java code we have written to read CSV �les

Pet.java the class that produces a Pet object

qi.java starter code for question-answering applications.

Browse through these �les; there's a lot to see here. The main portion of the lab will the completion

of the SortingVector and Pet classes.

2. Let's start with SortingVector.java. Add a sort(Comparator<E> c)method to the SortingVector<E>

class. This public method should sort the elements of the Vector<E> this class extends. We have

put the code for an array-based insertion sort in the �le InsertionSort.java.6 We make two

important observations:

(a) The insertion sort we provide sorts a user-provided array of integers. Your version should sort

the internal elements of this object. We're part of a Vector, not processing a user's array.

(b) The insertion sort code performs direct comparisons of data. So, for example, if you see

if (temp < data[index-1]) ...

that code should be converted to a call to the Comparator c's compare method. As mentioned

before, comparison methods, like compare(a,b) in Java typically return a value that is less-

than, equal-to, or greater-than zero if a is, repectively, less-than, equal-to, or greater-than b.

Thus we might end up with

if (c.compare(temp,get(index-1)) < 0) ...

6Insertion sort is su�cient for our purposes here, but it can be slow. Suggestion: be patient . You can use any sorting

technique you wish, as long as it is stable : a stable sort does not allow equal values to \pass each other" during the sorting

process. Bubble sort and insertion sort are stable. Selection sort and quicksort are not (the way we've seen them). Mergesort,

with care, can be. See the example program stable.java and Section 6.7 in the textbook for more details.

Notice the parallel between the direct array element comparison and the equivalent compare-

based comparison with zero. If you do not understand this, seek help!

When you've completed the sort method, observe that the main method of SortingVector sorts a

vector of 20 random integers:

values.sort((Integer a, Integer b)->(a-b)); // Comparator lambda

Notice how the compiler automatically converts the Integer expression a-b to the required int

value. If you run the SortedVector's main method:

javac SortedVector.java

java SortedVector

it will print, in ascending order , 20 random non-negative integers less than 1000.

3. Write the filter(Predicate<E> p) method for SortedVector<E>. This public method returns a

new SortedVector<E> whose elements are identi�ed by the java.util.function.Predicate<E> p.

Assuming that p is a fully speci�ed Predicate, the body of your method should run through all the

elements of this SortedVector and copy those identi�ed by the p to the result vector.

The code we provided does none of this. It simply returns this, ignoring the predicate p.

When your filter method is �nished, the lines in main:

SortingVector<Integer> mults;

mults = values.filter((Integer a) -> (a%3 == 0));

assign mults to be a new SortingVector<Integer> whose ascending random values are divisible by

3. The selection of values to construct mults is speci�ed by the Predicate lambda speci�cation.

We are thankful that the compiler is helping us with this concise speci�cation. Again, if you do not

understand what is going on here, ask questions.

Notice that every time you run SortingVector the program potentially generates di�erent numbers

of random multiples of 3.

4. It is worthwhile stopping and thinking about the versatility of this new extended class. Even when

the values stored in the SortingVector have no obvious ordering (we say the values are not totally

ordered), we can specify code that can be used to order the values in an application-speci�c way.

In fact, you could sort the values using several di�erent keys. Suppose we had a SortedVector of

String objects and performed the following two sorts:7

v.sort((String a, String b) -> (a.compareTo(b))); // natural order

v.sort((String a, String b) -> (a.length()-b.length()); // length order

7You can �nd this code in stable.java. Compile, run, and type text into the program. Indicated end of input with

control-D.

we would �nd the strings are ordered primarily by length. Closer inspection of each section of

Strings that are the same length, we notice they're in alphabetical order! As mentioned above, this

is a feature of stable sorts. With care, we can use many di�erent lambdas to sort collections of values

in many di�erent orders.

5. Let's think about pets. Examine the SeattlePets.csv �le. The lines of this �le have seven �elds

separated by commas:

December 18 2015,S107948,Zen,Cat,Domestic Longhair,Mix,98117

Here's how we interpret these �elds:

Field Interpretation

0 Date of pet registration (e.g. "July 24 2019")

1 Registration ID (e.g. "S107948")

2 Pet Name (e.g. "Java")

3 Pet Species (e.g. "Cat")

4 Pet Breed (e.g. "Domestic Shorthair")

5 Secondary Breed Description (e.g. "Mix")

6 Pet Zipcode, if known (e.g. "98119")

We hope to be able to read in the SeattlePets.csv database using a CSVReader. The CSVReader

reads each line from a CSV �le and returns a Vector<String> of the strings that make up each �eld.

Here's a typical use of the CSVReader class:

try {

Scanner input = new Scanner(new File("SeattlePets.csv"),"UTF-8");

CSVReader r = new CSVReader(input);

for (Vector<String> line : r) {

... process a pet ...

}

} catch (FileNotFoundException e) {

Assert.fail(e.toString());

}

The Scanner (input) allows us to scan through a �le, looking for words or tokens . The CSVReader

interprets the tokens on each line as a description of a Vector<String> of �elds that are separated

by commas. The try-catch statement is used to catch errors that occur if "SeattlePets.csv" is

not found in the current directory. Fortunately, we've provided the code that manages the CSV

reader for our Pet project, but you may �nd code similar to this useful in other classes.

Our primary focus will be on developing a Pet object that will allow us to maintain a database of

pets from Seattle. The next few steps take us through that process.

6. Peruse Pet.java. Here, we see the start of a class, Pet, that gathers the information from each line

of the Seattle pet registration database. Notice that it compiles even though there are no instance

variables associated with the Pet object. When you run the program, it is obviously trying to print

our favorite pet, found at location 25, 348 in the vector of pets read from the database:

javac Pet.java

java Pet

<A named living in zip code 0>

Anticipation builds.

7. The Pet constructor is called from the the static readPets method. This constructor takes the pet-

describing Vector<String> that is returned by a CSVReader scanning through the SeattlePets.csv

database. This Vector has seven �elds described in the comment for the constructor. Some �elds

should be saved in instance variables as String objects, �eld 5 should be ignored, and one|the ZIP

code|is to be maintained as an int with a missing value of zero.

Declare the half-dozen protected instance variables and initialize them in the constructor.

8. Each �eld has a public accessor method. For example, name() returns the pet's name, as de�ned

by �eld 2 in CSV Vector. Complete the accessor methods.

If all works well, you should be able to compile and run the Pet.java main method to print pet

25, 348, our current favorite:

javac Pet.java

java Pet

9. Notice that, in main, we make use of the static readPets method to read the database as a

Vector<Pet>. In fact, the result is a SortingVector<Pet>. We should be able to leverage this

fact to call sort and filter methods to sort the database and focus on pets of interest.

We would like you to write standalone applications that answer the following four questions. Your

programs should be very simple; we believe you do not need to use any loops:

q1. In q1.java, write a program that prints out pets who live at the University of Washington,

with ZIP code 98195. Notice they're not huskies.

q2. In q2.java, write a program that prints out the unique pet with the longest name.

q3. In q3.java, write a program that prints out the pet named \Java" whose ZIP code is largest.

q4. Many pets in Seattle are named Luna. Are more Lunas cats or dogs? Write a program q4.java

that answers this question.

If you make it this far, you'll have earned 9 points, most of the credit for this lab! Stop here, or

continue on for full credit and a couple of extra challenge questions to answer.

10. Sometimes it is useful to build a �lter that �nds unique values. If we sort values using a Comparator

c, we will potentially see regions of adjacent values, a and b, that cannot be distinguished by the

Comparator: c.compare(a,b) returns zero because these values appear to be equal. At the bound-

aries of these regions, however, we see adjacent values that can be distinguished by the Comparator.

Implement the unique(Comparator c) method that returns a SortingVector<E> of one or more

values that are representative of the regions values that appear in the sorted list. For example, the

following code

SortingVector<Integer> data = new SortingVector<Integer>();

int[] nums = {3, 2, 3, 45, 5, 4, 3, 2, 4, 4};

for (Integer i : nums) data.add(i);

SortingVector<Integer> reps =

data.unique((Integer a, Integer b) -> (a-b));

for (Integer r : reps) System.out.print(r+" ");

System.out.println();

leaves data unchanged, but prints reps as

2 3 4 5 45

the list of values that are pairwise-distinct using the Comparator. Be careful to make sure that your

approach works even when the SortingVector has a single value or is empty.

11. To test your implementation of unique, answer the following questions:

q5. Write a program q5.java that prints a representative of each of the pet species registered in

Seattle. There are four.

q6. Write a program q6.java that prints an example of each of the seven Seattle pet breeds that

contain the string "Retriever".

If you've made it this far: Congratulations! Make sure you add, commit, and push SortingVector.java

and programs q5.java and q6.java.

Submitting Your Work. Make sure you add and commit your SortingVector.java, Pet.java, and

your question-answering programs q1.java, q2.java, q3.java, and q4.java. If you answered questions

5 and/or 6, include q5.java and q6.java as well. In any case, sign the honorcode.txt �le. Remember

to push your work each time you leave the lab.

?

