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Lists with Dummy Nodes

Objective. To gain experience implementing List-like objects.

Discussion. Anyone attempting to understand the workings of a doubly linked list understands that it

is potentially di�cult to keep track of the references. One of the problems with writing code associated

with linked structures is that there are frequently boundary cases. These are special cases that must be

handled carefully because the \common" path through the code makes an assumption that does not hold

in the special case.

Take, for example, the addFirst method for DoublyLinkedLists:

public void addFirst(E value)

// pre: value is not null

// post: adds element to head of list

{

// construct a new element, making it head

head = new DoublyLinkedNode<>(value, head, null);

// fix tail, if necessary

if (tail == null) tail = head;

count++;

}

The presence of the if statement suggests that sometimes the code must reassign the value of the tail

reference. Indeed, if the list is empty, the �rst element must give an initial non-null value to tail.

Keeping track of the various special cases associated with a structure can be very time consuming and

error-prone.

One way that the complexity of the code can be reduced is to introduce dummy nodes . Usually,

there is one dummy node associated with each external reference associated with the structure. In the

DoublyLinkedList, for example, we have two references (head and tail); both will refer to a dedicated

dummy node:
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These nodes appear to the code to be normal elements of the list. In fact, they do not hold any useful

data. They are completely hidden by the abstraction of the data structure. They are transparent.

Because most of the boundary cases are associated with maintaining the correct values of external

references and because these external references are now \hidden" behind their respective dummy nodes,

most of the method code is simpli�ed. This comes at some cost: the dummy nodes take a small amount

of space, and they must be explicitly stepped over if we work at either end of the list. On the other hand,

the total amount of code to be written is likely to be reduced, and the running time of many methods

decreases if the special condition testing would have been expensive.

This Week’s Tasks. In this lab we will extend the DoublyLinkedList<E>, building a new class,

LinkedList<E>, that makes use of two dummy nodes: one at the head of the list, and one at the end.

You should begin taking a copy of the LinkedList.java starter �le. This �le simply declares LinkedList<E>

to be an extension of the structure5 package's DoublyLinkedList<E> class. The code associated with

each of the existing methods is similar to the code from DoublyLinkedList. You should replace that code

with working code that makes use of two dummy nodes:

1. First, recall that the three-parameter constructor for DoublyLinkedNodes takes a value and two

references|the nodes that are to be next and previous to this new node. That constructor will

also update the next and previous nodes to point to the newly constructed node. You may �nd

it useful to use the one-parameter constructor, which builds a node with null next and previous

references.

2. Replace the constructor for the LinkedList. Instead of constructing head and tail references that

are null, you should construct two dummy nodes; one node is referred to by head and the other by

tail. These dummy nodes should point to each other in the natural way. Because these dummy

nodes replace the null references of the DoublyLinkedList class, we will not see any need for null

values in the rest of the code. Amen.

3. Check and make necessary modi�cations to size, isEmpty, and clear.

4. Now, construct two important protected methods. The method insertAfter takes a value and

a reference to a node, previous. It inserts a new node with the value value that directly follows

previous. It should be declared protected because we are not interested in making it a formal

feature of the class. The other method, remove, is given a reference to a node. It should unlink the

node from the linked list and return the value stored in the node. You should, of course, assume

that the node removed is not one of the dummy nodes. These methods should be simple with no if

statements.

5. Using insertAfter and remove, replace the code for addFirst, addLast, getFirst, getLast,

removeFirst, and removeLast. These methods should be very simple (perhaps two lines each),

with no if statements.

6. Next, replace the code for the indexed versions of methods add, remove, get, and set. Each of these

should make use of only methods you have already written. They should work without any special

if statements. For add and remove, think carefully about how count is updated.

7. Finally, replace the versions of methods indexOf, lastIndexOf, and contains (which can be written

using indexOf), and the remove method that takes an object. Each of these searches for the location



of a value in the list and then performs an action. You will �nd that each of these methods is

simpli�ed, without mentioning the null reference.

Thought Questions. When we make a signi�cant change in design, like we have in this lab, it is useful

to re
ect on what was gained or lost. The following questions|ideal for an exam|probe a little deeper

into the design of LinkedList. We'll have an opportunity to discuss these next week.

1. The three-parameter constructor for DoublyLinkedNodes makes use of two if statements. Suppose

that you replace the calls to this constructor with the one-parameter constructor and manually use

setNext and setPrevious to set the appropriate references. The if statements disappear. Why?

2. The contains method can be written making use of the indexOf method, but not the other way

around. Why?

3. Notice that we could have replaced the method insertAfter with a similar method, insertBefore.

This method inserts a new value before the indicated node. Some changes would have to be made

to your code. There does not appear, however, to be a choice between versions of remove. Why is

this the case? (Hint: Do you ever pass a dummy node to remove?)

4. Even though we don't need to have the special cases in, for example, the indexed version of add, it is

desirable to handle one or more cases in a special way. What are the cases, and why is it desirable?

5. Which �le is bigger: your �nal result source or the original?

Submitting Your Work. To get credit for this week's lab make sure that you've added, committed,

and pushed the �les LinkedList.java and honorcode.txt (containing your signature). Recall that git

status and git push help to verify that everything is up-to-date.
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