
Computer Science CS136 (Fall 2021)

Duane Bailey & Aaron Williams

Laboratory 0

Setting up a Git and Java Environment

Objective. To set up a work
ow for using Git and Java on CS lab machines.

Overview. This semester, we will be making use of the computers in the various Computer Science labs:

“The Mac Labs” in Chemistry 216 and 217a. These labs are populated with Mac computers run-

ning macOS, a unix derivative. Your CS credentials will give you access to each Mac. The �les are

not shared between Macs: the work you perform on one computer is stored locally on that machine.

“The Unix Lab” in Chemistry 312. This lab is populated with Ubuntu, another unix derivative.

Your CS credentials will give you access to each workstation. Files created on these machines are all

shared: the work you perform on any of these computers can be accessed from any other. Because

they are central to the department, each machine is named after a breed of cattle. Here are the

current names of these machines:

amerifax bagual barzona brava charolais devon galloway guernsey kuri

lidianiata panda rathi reina sharabi sind siri sykia tundaca zebu

These machines are accessible from anywhere on campus as, for example, amerifax.cs.williams.edu.

The department also has three \compute servers" that are accessible from o�-campus. These ma-

chines are:

lohani limia deoni

Our purpose is show you how to make use of any of these labs. This will allow you to work in the

environment of your choice, without having to use your personal computer.

This Week’s Tasks. The following steps will guide you through this week's lab assignment. Make sure

you read and follow the instructions carefully:

1. During our labs, we'll be sitting in front of Mac computers. Log into one of these computers and

provide your Computer Science username and password, your CS credentials . Notice that your CS

username has your graduation year in front of what would normally be your Williams username.

2. At the bottom of the screen is the application Dock . From the \Go" menu, select \Utilities". This

will open a folder with common utilities. Find the application called \Terminal" and drag it into the

Dock. The Terminal application allows us to type commands directly into a Unix command shell.

3. Start the Terminal application by clicking on its icon in the Dock. You will be presented with an

interactive \shell". There are many Unix commands you can type at this point: try date, or whoami.

The exit command will cause the command shell to exit. If you type

ls



unix will list of all the �les that are in your home directory. You will notice this is listing all of the

names of �les you would normally see in a home folder in macOS. These are two views of the same

thing.

4. Make a new sub-directory to store all of your CS136 �les:

mkdir cs136

5. The \cd" command will allow you to change the current directory. Change the current directory to

be the cs136 directory:

cd cs136

If you type

pwd

it will print the name of the current working directory.

6. Before we can ask git to download the lab, it's useful to con�gure it. The following commands tell

git who you are (make sure you replace Joe Cool's username and email with your own):

git config --global user.name 'Joseph Cool'

git config --global user.email 'jcool@cs.williams.edu'

git config --global push.default simple

git config --global core.editor emacs

7. Now, we'll clone the repository for this lab. In the following command, replace 22xyz3 with your CS

username:

git clone https://evolene.cs.williams.edu/cs136-labs/22xyz3/lab0.git

This will download a copy of the lab for this week. It will be stored in a subdirectory called lab0.

8. Now, change into the lab0 directory and get a directory listing. You should see something like the

following:

GradeSheet.txt

LabHandout.pdf

honorcode.txt

The �le GradeSheet.txt describes how we are going to assign grades to the lab. Typically, it will

involve a checklist of items that must be completed. You're currently reading LabHandout.pdf. The

�le honorcode.txt is a text �le that we expect you edit and logically sign, indicating that the work

you are submitting is your own.

9. Using the editor of your choice, create a new �le, First.java in the lab0 directory that prints out

the string "Hello, world.":



public class First {

public static void main(String[] args) {

System.out.println("Hello, world.");

}

}

To compile First.java type:

javac First.java

This process results in �le First.class which can be run with

java First

Repeat the process of editing, compiling, and running this �rst java program until it prints Hello,

world.

10. The command

git status

is useful in making sure that git is tracking the modi�cations you make to the work you want graded.

Typing that now gives you

On branch main

Your branch is up to date with 'origin/main'.

Untracked files:

(use "git add <file>..." to include in what will be committed)

First.class

First.java

nothing added to commit but untracked files present (use "git add" to track)

We'd like to turn in First.java for credit, so it's important to track that �le. Since First.class is

the result of compiling the Java code, we don't need to track it. Let's tell git to track First.java.

Type:

git add First.java

The git status command will now report:

On branch main

Your branch is up to date with 'origin/main'.

Changes to be committed:

(use "git restore --staged <file>..." to unstage)



new file: First.java

Untracked files:

(use "git add <file>..." to include in what will be committed)

First.class

Now, it's time to commit whatever has been added:

git commit -m 'My first java program.'

This tells git that we're commiting to a new version of the repository. The -m indicates the string

that follows is a message that describes the substantive changes associated with this new version. A

git status at this point yields:

On branch main

Your branch is ahead of 'origin/main' by 1 commit.

(use "git push" to publish your local commits)

Untracked files:

(use "git add <file>..." to include in what will be committed)

First.class

nothing added to commit but untracked files present (use "git add" to track)

Notice how the commits on our local machine are ahead of evolene's origin/master by one commit.

If we would like that version to be stored on the server, we must push it:

git push

Now we see git's status is:

On branch main

Your branch is up to date with 'origin/main'.

Untracked files:

(use "git add <file>..." to include in what will be committed)

First.class

nothing added to commit but untracked files present (use "git add" to track)

This will contact evolene to update its view of your project. You will have to provide a password.

11. Edit the honorcode.txt �le, writing your name in the appropriate place. By doing this, you are

acknowledging this work is your own. Make sure you add, commit, and push this �le.



12. We're pretty close to having �nished the lab. Our next steps will repeat this process on the Ubuntu

machines, upstairs. The reason that we're suggesting you do this is so that you can (1) feel comfort-

able using the Ubuntu machines, and (2) to demonstrate that the work you did in the Mac Lab is

re
ected wherever you decide to clone or pull the repository.

Now, log into one of the Ubuntu machines in the unix lab. As mentioned, these machines have

interesting names, di�erent breeds of cattle. We'll use the Mac to log into one of these machines and

clone a copy of the work you've done so far, on the machine upstairs. Suppose you decide to log into

one of the compute servers, lohani. You would type:

ssh lohani.cs.williams.edu

This establishes a connection to a secure shell shell on lohani. All of your interactions with this

remote machine will take place in this terminal window. Because many editors open new windows,

you should limit editing to using an editor that will work within the window. Emacs is commonly

used, but you may �nd other editors you like better.

When you've logged in, you should create a cs136 directory, change to that directory, con�gure git,

and then clone the current version of your lab0:

mkdir cs136

cd cs136

git config --global user.name 'Joseph Cool'

git config --global user.email 'jcool@cs.williams.edu'

git config --global push.default simple

git config --global core.editor emacs

git clone https://evolene.cs.williams.edu/cs136-labs/22xyz3/lab0.git

cd lab0

On the Ubuntu machines, this initial setup is only necessary once since your home directory is shared

across the entire network.

Now, when you type ls, you will see the following:

First.java

GradeSheet.txt

LabHandout.pdf

honorcode.txt

13. You should be able to compile and run your program, First.java.

14. When you type the command w, you get a list of the current users on the machine:

12:43:41 up 8 days, 1:30, 7 users, load average: 0.00, 0.00, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

expresso pts/0 137.165.124.204 11:32 1:11m 0.03s 0.03s -bash

expresso pts/1 137.165.124.204 Wed12 47:48m 0.09s 0.09s -bash

bailey pts/4 137.165.120.176 12:22 19:45 0.03s 0.03s -bash

bailey pts/6 137.165.120.176 12:43 2.00s 0.03s 0.01s w



Let's capture this output to a �le called users.txt:

w >users.txt

(You won't see any output because it was redirected to the �le.) Let's add, commit, and push your

copy of users.txt as a token of having been here:

git add users.txt

git commit -m 'Added a list of users logged into lohani.'

git push

15. At this point, you can type

logout

to close the secure shell connection and return to directly typing into the Terminal window on the

Mac.

16. If you look to see what �les are in the local directory, you'll see that users.txt is not there. That

change to the repository is \up in the cloud" on evolene. To refresh the local version of the repository

with changes there were committed elsewhere, we'll pull down those changes locally:

git pull

Any interaction with evolene will require a password, for security. After you've pulled down the

most recent copy, you'll see those changes locally.

The �rst time you bring down an up-to-date copy of a repostiory, you use git clone. Any refreshing of

that work is done with git pull.

Typically, when we enter the lab, we perform a git pull, to pull down any changes that might have

been made while we were away from the machine. We work on our project and, when we leave, we add,

commit, and push all your modi�cations work back up to evolene. If, for some reason, you decide to work

in another lab (or on your own machine), the latest version of your work will have been stored in GitLab.

It's also important, of course, to make sure your work is pushed up to the servers so that we can grade

it.

Finally, while we will work in lab in the Mac Lab, we encourage you to use the machines of the Ubuntu

lab to perform work outside of lab hours. These machines are available for your use, and we expect that

you will know how to use them in later courses. Furthermore, because the Mac Lab can be conjested with

CS134 and CS136 students, you may �nd it more productive to physically work in the Unix lab.

Submitting Your Work. To get credit for this week's lab make sure that you've added, committed, and

pushed the �les First.java, users.txt, and honorcode.txt (containing your signature). The command:

git status

Should indicate that none of the above �les have modi�cations that need to be committed. Finally, if you

type

git push

The response "Everything up to date" is an indication that your work is re
ected on evolene.

?


