
Williams College Lecture 24 Brent Heeringa, Bill Jannen

Errors and Exceptions

By now you’ve probably seen your fair share of Python errors. For example:

>>> l = list(range(10))
>>> l[10]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

This IndexError is a Python Exception, which is a way of signaling behavior that is exceptional including
errors. Most modern programming languages support exceptions—they allow you to structure your programs so that
code to both check and deal with errors is logically distinct from your actual control flow. This makes code much
more readable. Here is how exception-handling in Python works. We embed code in a try/except block where,
if an exception is raised, the flow immediately jumps to the except clause. If the type of exception matches, then
the block is entered. Control flow then returns to the code after the except block. For example, running the follow
code

1 l = list(range(10))
2 try:
3 l[10]
4 except IndexError as ie:
5 print(”Caught an IndexError: {} −− moving on”.format(ie))
6
7 print(l[0])

produces

Caught an IndexError: list index out of range -- moving on
0

You can use the class hierarchy to catch some types of errors and let others through. For example, above we
would only catch exceptions of type IndexError—if we executed the following code

1 l = list(range(10))
2 try:
3 l.push(5)
4 except IndexError as ie:
5 print(”Caught an IndexError: {} −− moving on”.format(ie))

then the exception would not be caught

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

AttributeError: ’list’ object has no attribute ’push’

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 24 Brent Heeringa, Bill Jannen

Errors are actually a good thing: when it comes to exceptions, the rule of thumb is to catch only what you can handle.
Consider the portion of the Exception class hierarchy and code example shown below:

BaseException

KeyboardInterrupt Exception

ArithmeticError TypeError

ZeroDivisionError

1 def int fraction(num, denom):
2 try:
3 return num // denom
4 except Exception as e:
5 print(”Can’t divide by zero”)
6 return None

The only exceptional behavior that we can reason about here is dividing-by-zero. However, our except clause catches
all exception classes that inherit from the general Exception class. As a result, we do not properly handle the
following code:

>>> int_fraction(3, ’a’):
Can’t divide by zero
None

What we really want is to receive the following error so we know to go back and fix our code:

Traceback (most recent call last):
File ‘‘<stdin>’’, line 1, in <module>

TypeError: unsupported operand type(s) for //: ’int’ and ’str’

We would simply change our except clause to catch the specific ZeroDivisionError class.

1 def int fraction(num, denom):
2 try:
3 return num // denom
4 except ZeroDivisionError as e:
5 print(”Can’t divide by zero −− returning 0”)
6 return 0

To cause an error, you simply raise the name of a class that is derived from BaseException. In the next section
on iterators, we’ll see how the built-in StopIteration class is used to signal the end of iteration.

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data



Williams College Lecture 24 Brent Heeringa, Bill Jannen

Review of Iterators

A Python object is iterable if it supports the iter function—that is, it has the magic method iter defined—and
returns an iterator. An iterator is something that

• supports the next function—that is, the magic method next is defined;

• throws a StopIteration when the iterator is empty; and

• returns itself under an iter call.

Iterators may be defined using classes or with generators. For example, suppose we want an iterator that generates
all squares below a certain threshold. We could define the following squares class.

1 class Squares:
2
3 def init (self, threshold=None):
4 self. state = 1
5 self. threshold = threshold
6
7 def below threshold(self):
8 return self. threshold is None or self. state∗∗2 < self. threshold
9

10 def iter (self):
11 return self
12
13 def next (self):
14 if self. below threshold():
15 sq = self. state∗∗2
16 self. state += 1
17 return sq
18 else:
19 raise StopIteration()

Some specific points:

• We use the optional parameter threshold=None to allow for infinite generation. This convention of setting
the value to None is common in Python.

• The iter method returns self

• The below threshold method makes use of a short-circuited logical or operator. Short-circuited means
that the expressions are evaluated left-to-right and if the whole expression can be inferred without evaluating
any more expressions, then evaluation is complete. In this case, if self. threshold is None then the
right-hand side is never evaluated, which is good because you can’t compare an integer to None.

• The next method raises a StopIteration using the raise syntax.

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data



Williams College Lecture 24 Brent Heeringa, Bill Jannen

Example: Even Squares

Imagine that you wanted to create an iterator that returned squares that were even. One way to do this is to create
a new even squares class that inherits from squares. Without any new methods, the even squares class
inherits the behavior of squares as is. However, when next is called, we only want even squares returned. To do
this, we override the the next method so that it calls the next method of its superclass until it reaches an even
square.

1 class EvenSquares(Squares):
2
3 def next (self):
4 sq = super(). next ()
5 while (sq % 2 != 0):
6 sq = super(). next ()
7 return sq

Fall Semester 2016 4 CS 135: Diving into the Deluge of Data


