
Williams College Lecture 14 Brent Heeringa, Bill Jannen

Practice with a Circle Class

Imagine you were crudely modeling urban sprawl using circles of varying radii. You might be interested in creating
this abstraction because you’re interested in both the area and diameter of certain types of sprawl. This is an excellent
opportunity to create a new Circle type with a Python class.

• A natural way of describing a circle is with a radius. This means the internal state of our circle should include
radius as a member (or instance) variable.

• Thus, the constructor or initializer method should have one parameter, radius, besides the self parameter.

• The Circle class needs to store this value as an instance variable.

1 import math
2
3 class Circle:
4
5 def init (self, radius):
6 self.radius = radius
7
8 def diameter(self):
9 return self.radius∗2

10
11 def area(self):
12 return math.pi ∗ self.radius∗∗2
13
14 def repr (self):
15 return ”Circle({})”.format(self.radius)

>>> import circle
>>> c = circle.Circle(1.0)
>>> c
Circle(1.0)
>>> c.radius
1.0
>>> c.diameter()
2.0
>>> c.area()
3.141592653589793
>>>

Fall Semester 2016 1 CS 135: Diving into the Deluge of Data



Williams College Lecture 14 Brent Heeringa, Bill Jannen

1 Binary Trees

Imagine trying to represent the process of tossing a two-sided coin 2 times in a row, or more generally, n times in a
row.

H T

H T H T

The natural structure that emerges is what computer scientists call a binary tree. In its most basic form, we can
think of a binary tree as being composed of a root node, and two other, simpler binary trees, which are the left child
and the right child. The simplest binary tree is a leaf, which is just a root node with no left or right children. This
definition is inductive: we start with a base case—the leaf—and then define binary trees in terms of simpler binary
trees. This type of induction is called structural induction and most modern programming languages, including
Python, support it. This means we’re free to write a Binary tree class as follows:

1 class BinaryTree:
2
3 def init (self, root, left=None, right=None):
4 self.root = root
5 self.left = left
6 self.right = right
7
8 def has left(self):
9 return self.left is not None

10
11 def has right(self):
12 return self.right is not None
13
14 def leaf(self):
15 ””” returns True if and only if this tree is a leaf ”””
16 return not (self.has left() or self.has right())

Computer scientists often call this a recursive data structure because it is defined recursively. Let’s look at this
code more closely.

• The init method takes three parameters (we usually don’t count the self parameter of a method because
when you call the method, the self is implicit passed) that correspond to the root node and the left and right
child trees respectively.

• The left and right parameters are called keyword parameters and they have default values of None so
that any binary tree created only with a root node is a leaf.

• The leaf method returns true if and only if the node is a leaf. This is a convenience method so that any node
can tell whether it is a leaf or not.

Fall Semester 2016 2 CS 135: Diving into the Deluge of Data



Williams College Lecture 14 Brent Heeringa, Bill Jannen

1.1 Constructing all Paths

Imagine that you’re given a binary tree where each node is a string and you wish to construct all possible sentences
flowing from top-to-bottom—from the root to the leaves. This corresponds to considering all possible paths from
the root to the leaves.

*

CAT DOG

PURRS BARKS PURRS BARKS

A natural way of constructing these paths is to use the recursive definition of the binary tree to our advantage.
Here’s how we’ll think about it.

• First, our all paths method should return a list of paths, where each path is a list of node values.

• If the tree is a leaf, then there is only one path so we’d return a list containing a single path, which is a list
corresponding to the root of the tree. In other words, all paths should return [[self.root]]

• If the tree is not a leaf, then we can (1) recursively find all the left paths if they exist, insert our root node value
to the front of all of them and (2) recursively find all the right paths if the exist and do the same. We can then
return the concatenation of these two lists.

Writing this code in Python is almost like transcribing our above sketch.

1 if self.leaf():
2 return [[self.root]]
3 else:
4 paths = []
5
6 if self.has left():
7 left paths = self.left.all paths()
8 for path in left paths:
9 path.insert(0, self.root)

10 paths.extend(left paths)
11
12 if self.has right():
13 right paths = self.right.all paths()
14 for path in right paths:
15 path.insert(0, self.root)
16 paths.extend(right paths)
17
18 return paths

Fall Semester 2016 3 CS 135: Diving into the Deluge of Data



Williams College Lecture 14 Brent Heeringa, Bill Jannen

1.2 Generating Coin Flips

Let’s reconsider our representation for generating all outcomes of tossing a two-sided coin n times. The root node
represents, in some sense, not tossing the coin. The two children represent the possibilities after tossing the coin
once. Their two children, respectively, represent tossing it again. Given some value n, how would we create this
tree? One thing to notice is that the tree representing three tosses, is just a combination of the two trees representing
two tosses, with the root node value now replaced with the respective choice. What is zero tosses? Just a leaf with a
star value!

*

H T

H T H T

H T H T H T H T

*

* *

H T H T

H T H T H T H T

This leads to the following algorithm recursive construction algorithm.

1 from tree import BinaryTree
2 import sys
3
4 def build tree(n):
5 ”””
6 Create a binary tree corresponding to all possible
7 outcomes of ’n’ tosses of a two−sided coin
8 ”””
9 if n == 0:

10 return BinaryTree(’∗’)
11 else:
12 left = build tree(n−1)
13 right = build tree(n−1)
14 left.root = ’H’
15 right.root = ’T’
16 return BinaryTree(’∗’, left, right)

Now we can use our all paths method to generate all possible coin flips. These paths will all start with a ‘*’
so we should ignore the first node in each path. We can print them out by joining them together with a ’-’. Viola!

1
2 def generate tosses(n):
3 return [path[1:] for path in build tree(n).all paths()]
4
5 if name == ’ main ’:
6 for path in generate tosses(int(sys.argv[1])):
7 print(”−”.join(path))

Fall Semester 2016 4 CS 135: Diving into the Deluge of Data


