Name: Partner:

Python Activity 17: Import & Modules
Python has some built-in features for running code as a script vs. importing as a module.

Learning Objectives

Students will be able to:

Content:

e Explain the use of the import statement

o Predict the behavior of code when run as a script versus module
Process:

e Write code to import our own user-defined functions

e Write code whose behavior differs as a script and module

Prior Knowledge

e Expressions, variables, arithmetic, input

Critical Thinking Questions:
1. Closely examine the Python program below.

Python Program:
from math import pi

radius = int (input ("Radius: "))
area = pli * radius**2
print (area)

a. What do you think the output might be, if the user enters a radius of 1?
b. What might the value of pi be?
c. Circle the new keywords in the code we haven’t yet seen.
O-w d. What might those new keywords do?
2. Examine the following code, it is very similar to the code that we explored in question 1.

from math import *

radius = int (input ("Radius: "))
area roundup = ceil(pi * radius**2)
print (area roundup)

a. Underline where this new code differs from the previous example.
b. How might the output for this program compare with the output for the previous program?

c. Isceil(..) avariable, a function, a boolean, or a string?

d. Why might we have needed to change the text in the first line?

FYI: import allows us to use code from external modules (or libraries), so we can make use of the definitions
constructed in those modules. We can either import definitions one at a time with from <module name> import
<definition name> or all the definitions in the module with from <module name> import *.

Closely examine the Python program, area.py, below.

Python Program: area.py
from math import pi

def get area(radius):
area = pil * radius**2
return area

Trace through the program, how does the command flow differ in this example from the first example?

When we run interactive python, here is the output we observe:
>>> from area import get area
>>>

What happened?

We can continue to use interactive python to write more code, as below:
>>> from area import get area

>>> get area(l)

3.141592653589793

What happened?

What would we observe if we ran python3 area.py (run as a script)?

How would we modify this code so it gives us meaningful output when we run it as a script?

How does the area module differ from the math module?

Below, we’ve added some code to area.py and saved it as area2.py.

Python Program: area2.py
from math import pi

def get area(radius):
area = pi * radius**2
return area

rad = int (input ("Radius: "))
print (get area(rad))

Trace through the program, how does the command flow differ in this example from the previous?

When we run area.py as a script from the Terminal with python3 area2.py, here is the output:
python3 areaZ.py
Radius:

O-» How does this output differ from the previous example (area.py)? Why might this be?

c. When we import getArea from the area module, here is the output we observe:
>>> from area2Z import get area
Radius:

O How does this output differ from the previous example (area.py)? Why might this be?

d. Can you imagine a situation in which the user might want to use the get area (. .) function, but not have
python prompt the user for an input radius?

FYI: Sometimes, we want to import python code, and other times we may want to run it as a standalone script. To do
this, python has a special keyword _name . If _name _is “ main__”, then the code is being run as a script.

5. Below, we’ve added some code to area.py and saved it as area3.py.

Python Program: area3.py
from math import pi

def get area(radius):
area = pil * radius**2
return area

if name == " main ":
rad = int (input ("Radius: "))
print (get area(rad))

a. When we run area3.py as a script from the Terminal with python3 area3.py, here is the output:
python3 area3.py
Radius:

When we import getArea from the area module, here is the output we observe:
>>> from areaZ import get area
>>>

O=w How do these outputs differ from the previous examples, area.py & area2.py? Why might this be?

O-w b. What is the value of __name__ when we run area3.py as a script?

O-p ¢ What might be the value of __name__ when we import area3.py as a module?

d. What could would we write to test our hypotheses in questions (b) and (c)?

Application Questions: Use the Python Interpreter to check your work

1. Write a function that calculates and returns the hypotenuse of a triangle, given the two legs, a and b. (Note: the
math module has a function called sgrt (x) that calculates the square root of a value, x). Make sure your
code can be run as a stand-alone script, but also that it’s usable as a module.

Write the interactive python commands you’d use to test your function:

>>>
>>>
>>>
>>>
>>>

What would be the output?

Write how you’d run the code as a script:

What would be the output?

FYI: Typically, when we import a module, immediate output is not desirable. Importing modules is typically limited to
reading in definitions and variable assignments.

