
Laboratory 6: The Unspeller

Objective. To gain experience with String manipulations.

Discussion. Because names can be spelled in a variety of ways (Bailey, Baily,
Bailly Bailie, etc.) is useful to come up with an organized approach to reducing
a name to its constituent sounds. Once reduced, the distilled form of the word
can be used as a key or locator, say in a census. If vowels and double letters are
dropped, for example, each of the spellings of Bailey would be found under the
entry \bl" (along with Bela and Boyle). The National Archives makes extensive
use of the Soundex system. In this system the �rst letter and the �rst three
consonants form a four symbol key (see Problem ??).

Our approach, in this lab, is to write a method that reduces the word using
the following process:

1. all double letters are reduced to one, then

2. if the �rst letter is a vowel, it is converted to an exclamation point (`!'),
then

3. all remaining vowels are removed.

Thus apple becomes !pl; bible, bubble, and babble become bbl; eye and I
become !; and label and lable become lbl. This last example demonstrates
a potential use for the function: if a word is misspelled, alternatives can be
derived from a dictionary by printing all correctly spelled words with similarly
reduced forms.

In this lab, you are to write two functions: isVowel and reduce. isVowel
is a method that takes a character and returns true if the character is a vowel.
You may assume that the character is lower case, and `y' should be considered
a vowel. The reduce method takes a word (represented as a lowercase String)
and returns a String that has been fully reduced according to the rules above.

Procedure. Perform the following steps while completing this lab:

1. Write the method isVowel as elegantly as possible. (Hint: one technique
uses the indexOf method of Strings.)

2. Test isVowel fully before going onward.

3. Write the method reduce. Be aware that if letters are removed from a
String, it becomes shorter; this may confuse poorly designed loops. One
approach might be to accumulate the result in a second String.

4. Test reduce fully before going onward. Does it work on cases discussed
above? How about llama and squill?

5. If you are so inclined, you may download the Undict class from the book's
web site. When included in the project along with a list of words in a text
�le called dict (any word list will do), the following code may be used to
print out words in dict that sound similar to the String s:



2

ConsoleWindow c = new ConsoleWindow();

Undict d = new Undict();

String s;

do

{

s = c.input.readString();

c.out.println(d.like(s));

} while (!s.equals("quit"));

The program stops when the word quit is typed at the console. To verify
the correctness of your reduce function further, correctly spelled words
from the dict �le should appear among the words found in Undict when
typed at the keyboard. If they do not, there is a problem with your reduce
method.

Thought questions. Consider the following questions as you complete the lab:

1. What words reduce to !ck?

2. Why is the leading vowel rule a�ective?

3. Outline three improvements to reduce that make use of various sound am-
biguities in English. Provide examples of misspellings whose identi�cation
depends on your improvement.


