
Laboratory 2: A Simple Drawing Program

Objective. To play with some of the features of the element package.

SimpleDraw

Discussion. In this lab we enter a pre-written program that allows us to ex-
periment with the features of the element package. The program we will be
experimenting with allows us to draw a single \curve" in the drawing window.
This may seem a little simplistic, but there are many things to be learned even
from scribbling on a computer's screen.

Here is the program we will start with:

// Lab: Experimenting with interaction in the drawing window.

import element.*;

import java.awt.Color;

public class SimpleDraw

{

public static void main(String args[])

{

DrawingWindow d = new DrawingWindow(200,400);

Pt mouse;

final int radius = 2;

Circle nib = new Circle(0,0,radius);

d.setForeground(Color.red);

d.awaitMousePress();

while (d.mousePressed())

{

mouse = d.getMouse();

nib.center(mouse);

d.fill(nib);

}

}

}

First, this program does not use a ConsoleWindow. Increasingly, programs in
today's world are graphically oriented. Instead, we use the DrawingWindow

referred to by d. Skipping down we see there is the loop

while (d.mousePressed())

Strictly speaking, we don't know about loops, but this one is simple: it
executes the getMouse, nib.center, and d.fill methods as fast as possible,
as long as the mouse button is being pressed. In fact, all of the external evidence
of the program running is the result of executing those three statements: the
program simply draws circles at each point.



2

Procedure. Enter, run, and modify the draw program:

1. Start your programming environment and type in the above program.

2. Compile and run the program. When the program begins to run, the
drawing window appears. With a curve in mind, press the mouse and
sketch out the curve with the mouse down. When you let go, the program
should stop.

3. Run the program and draw your curve by moving the mouse fast. You
should see the individual circles that make up the curve. This is a physical
representation of the very short length of time it takes for Java to execute
one iteration of the loop! If your machine is faster, the circles will be closer
together, and the curve will be smoother.

4. Change the radius declaration so that it has the value 5. This allows you
to draw with a thicker pen.

5. Change the program so that the nib is a thin rectangle whose center
point is mouse. (Hint: you will have to declare a Rect of the appropriate
dimensions, and frequently center it at mouse.).

6. Experiment further with changes to the program (see below), remembering
to save your program at the end.

Thought questions. Consider the following questions as you complete the lab:

1. What happens if you put a d.invertMode() at the top of your program
and change the foreground color to Color.black? (Since black is the
usual color, you can just comment out the setForeground command.)

2. What happens if you use relative mouse commands (like move and line)
after having moved absolutely to the point mouse? Is it possible to have,
for example, as slanted nib for italic calligraphy?

3. How would you get the compter to report (say, in a console window), the
number of points drawn?

4. How would this help you determine the average length of time it takes for
Java to draw a Circle at the point mouse?

5. What happens if you type main(args) as the last line of your program?


