EXERCISES

7.1.

7.2.

7.3.
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Consider training a two-input perceptron. Give an upper bound on the number of
training examples sufficient to assure with 90% confidence that the learned percep-
tron will have true error of at most 5%. Does this bound seem realistic?

Consider the class C of concepts of the form (a < x < b)A(c < y <d), wherea, b, c,
and d are integers in the interval (0, 99). Note each concept in this class corresponds
to a rectangle with integer-valued boundaries on a portion of the x, y plane. Hint:
Given a region in the plane bounded by the points (0,0) and (n — 1,n — 1), the
number of distinct rectangles with integer-valued boundaries within this region is
(5%
(@) Give an upper bound on the number of randomly drawn training examples
sufficient to assure that for any target concept ¢ in C, any consistent learner
using H = C will, with probability 95%, output a hypothesis with error at

most .15.
(b) Now suppose the rectangle boundaries a, b, ¢, and d take on real values instead

of integer values. Update your answer to the first part of this question.

In this chapter we derived an expression for the number of training examples suf-
ficient to ensure that every hypothesis will have true error no worse than € plus
its observed training error errorp(h). In particular, we used Hoeffding bounds to
derive Equation (7.3). Derive an alternative expression for the number of training
examples sufficient to ensure that every hypothesis will have true error no worse
than (1 + y)errorp(h). You can use the general Chernoff bounds to derive such a

result.
Chernoff bounds: Suppose Xi,..., X, are the outcomes of m independent

coin flips (Bernoulli trials), where the probability of heads on any single trial is
Pr[X; = 1] = p and the probability of tails is Pr[X; = 0] = 1 — p. Define § =
X1+ X, +---+ X, to be the sum of the outcomes of these m trials. The expected
value of S/m is E[S/m] = p. The Chernoff bounds govern the probability that S/m

will differ from p by some factor 0 < y < 1.

PrS/m > (1 +y)p] < e/

Pr[S/m < (1—y)p] <e™"

Consider a learning problem in which X = % is the set of real numbers, and C = H
is the set of intervals over the reals, H = {(a < x < b) | a,b € R}. What is the
probability that a hypothesis consistent with m examples of this target concept will
have error at least €? Solve this using the VC dimension. Can you find a second
way to solve this, based on first principles and ignoring the VC dimension?
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MACHINE LEARNING

Consider the space of instances X corresponding to all points in the x, y plane. Gjye

the VC dimension of the following hypothesis spaces:

(a) H, = the set of all rectangles in the x, y plane. That is, H = {((@a < x < b)A(c <
y <d))la,b,c,d € R}.

(b) H, = circles in the x, y plane. Points inside the circle are classified as positive
examples

(c) H, =triangles in the x, y plane. Points inside the triangle are classified as positive
examples

Write a consistent learner for H, from Exercise 7.5. Generate a variety of target
concept rectangles at random, corresponding to different rectangles in the plane,
Generate random examples of each of these target concepts, based on a uniform
distribution of instances within the rectangle from (0, 0) to (100, 100). Plot the
generalization error as a function of the number of training examples, m. On the
same graph, plot the theoretical relationship between ¢ and m, for § = .95. Does
theory fit experiment?

Consider the hypothesis class H,;; of “regular, depth-2 decision trees” over n
Boolean variables. A “regular, depth-2 decision tree” is a depth-2 decision tree (a
tree with four leaves, all distance 2 from the root) in which the left and right child
of the root are required to contain the same variable. For instance, the following
tree is in H, ;.

N X3

(a) As a function of n, how many syntactically distinct trees are there in H,4?

(b) Give an upper bound for the number of examples needed in the PAC model to
learn H,,;; with error € and confidence §.

(c) Consider the following WEIGHTED-MAJORITY algorithm, for the class H, . You
begin with all hypotheses in H,,, assigned an initial weight equal to 1. Every
time you see a new example, you predict based on a weighted majority vote over
all hypotheses in H,4,. Then, instead of eliminating the inconsistent trees, you cut
down their weight by a factor of 2. How many mistakes will this procedure make
at most, as a function of n and the number of mistakes of the best tree in H,;?

This question considers the relationship between the PAC analysis considered in this
chapter and the evaluation of hypotheses discussed in Chapter 5. Consider a learning
task in which instances are described by n boolean variables (e.g., x; AX; Ax3...X,)
and are drawn according to a fixed but unknown probability distribution D. The
target concept is known to be describable by a conjunction of boolean attributes and
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