EXERCISES

- **7.1.** Consider training a two-input perceptron. Give an upper bound on the number of training examples sufficient to assure with 90% confidence that the learned perceptron will have true error of at most 5%. Does this bound seem realistic?
- **7.2.** Consider the class C of concepts of the form $(a \le x \le b) \land (c \le y \le d)$, where a, b, c, and d are integers in the interval (0, 99). Note each concept in this class corresponds to a rectangle with integer-valued boundaries on a portion of the x, y plane. Hint: Given a region in the plane bounded by the points (0, 0) and (n 1, n 1), the number of distinct rectangles with integer-valued boundaries within this region is $(\frac{n(n+1)}{2})^2$.
 - (a) Give an upper bound on the number of randomly drawn training examples sufficient to assure that for any target concept c in C, any consistent learner using H = C will, with probability 95%, output a hypothesis with error at most .15.
 - (b) Now suppose the rectangle boundaries a, b, c, and d take on real values instead of integer values. Update your answer to the first part of this question.
- 7.3. In this chapter we derived an expression for the number of training examples sufficient to ensure that every hypothesis will have true error no worse than ϵ plus its observed training error $error_D(h)$. In particular, we used Hoeffding bounds to derive Equation (7.3). Derive an alternative expression for the number of training examples sufficient to ensure that every hypothesis will have true error no worse than $(1 + \gamma)error_D(h)$. You can use the general Chernoff bounds to derive such a result.

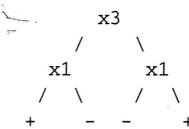
Chernoff bounds: Suppose X_1, \ldots, X_m are the outcomes of m independent coin flips (Bernoulli trials), where the probability of heads on any single trial is $\Pr[X_i = 1] = p$ and the probability of tails is $\Pr[X_i = 0] = 1 - p$. Define $S = X_1 + X_2 + \cdots + X_m$ to be the sum of the outcomes of these m trials. The expected value of S/m is E[S/m] = p. The Chernoff bounds govern the probability that S/m will differ from p by some factor $0 \le \gamma \le 1$.

$$\Pr[S/m > (1+\gamma)p] \le e^{-mp\gamma^2/3}$$

$$\Pr[S/m < (1-\gamma)p] \le e^{-mp\gamma^2/2}$$

4. Consider a learning problem in which $X = \Re$ is the set of real numbers, and C = H is the set of intervals over the reals, $H = \{(a < x < b) \mid a, b \in \Re\}$. What is the probability that a hypothesis consistent with m examples of this target concept will have error at least ϵ ? Solve this using the VC dimension. Can you find a second way to solve this, based on first principles and ignoring the VC dimension?

- **7.5.** Consider the space of instances X corresponding to all points in the x, y plane. Give the VC dimension of the following hypothesis spaces:
 - (a) H_r = the set of all rectangles in the x, y plane. That is, $H = \{((a < x < b) \land (c < y < d)) | a, b, c, d \in \Re\}$.
 - (b) $H_c = \text{circles in the } x, y \text{ plane. Points inside the circle are classified as positive examples}$
 - (c) H_t =triangles in the x, y plane. Points inside the triangle are classified as positive examples
- 7.6. Write a consistent learner for H_r from Exercise 7.5. Generate a variety of target concept rectangles at random, corresponding to different rectangles in the plane. Generate random examples of each of these target concepts, based on a uniform distribution of instances within the rectangle from (0,0) to (100,100). Plot the generalization error as a function of the number of training examples, m. On the same graph, plot the theoretical relationship between ϵ and m, for $\delta = .95$. Does theory fit experiment?
- 7.7. Consider the hypothesis class H_{rd2} of "regular, depth-2 decision trees" over n Boolean variables. A "regular, depth-2 decision tree" is a depth-2 decision tree (a tree with four leaves, all distance 2 from the root) in which the left and right child of the root are required to contain the same variable. For instance, the following tree is in H_{rd2} .



- (a) As a function of n, how many syntactically distinct trees are there in H_{rd2} ?
- (b) Give an upper bound for the number of examples needed in the PAC model to learn H_{rd2} with error ϵ and confidence δ .
- (c) Consider the following Weighted-Majority algorithm, for the class H_{rd2} . You begin with all hypotheses in H_{rd2} assigned an initial weight equal to 1. Every time you see a new example, you predict based on a weighted majority vote over all hypotheses in H_{rd2} . Then, instead of eliminating the inconsistent trees, you cut down their weight by a factor of 2. How many mistakes will this procedure make at most, as a function of n and the number of mistakes of the best tree in H_{rd2} ?
- 7.8. This question considers the relationship between the PAC analysis considered in this chapter and the evaluation of hypotheses discussed in Chapter 5. Consider a learning task in which instances are described by n boolean variables (e.g., $x_1 \wedge \bar{x_2} \wedge x_3 \dots \bar{x_n}$) and are drawn according to a fixed but unknown probability distribution \mathcal{D} . The target concept is known to be describable by a conjunction of boolean attributes and