Markov Decision Processes
Value Iteration

Andrea Danyluk
February 24, 2017

2/24/17

Announcements

* Programming Assignment 2 in progress
* How to find coding partners

Today’s Lecture

* Markov Decision Processes
* Value Iteration

Deterministic Gridworld

Deterministic Gridworld

Stochastic Gridworld

How to planin a
stochastic world?




Policies, not Plans

2/24/17

Markov Decision Processes

An MDP consists of:

* S:aset of states

e A:aset of actions

e P(s’ | s, a): the probability of ending up in sate s’, given
that the agent is in state s and takes action a

¢ R(s): the immediate reward at state s

¢ Adesignated start state

* [Sometimes] a designated terminal state

“Markov” = given the present state, the future and the
past are independent

Gridworld State Rewards

R(s) = +1, if s is “apple state”
-.05 otherwise

If our goal is to maximize the sum of the rewards (or
something like that),

negative reward will help us reach our

goal as efficiently as possible.

Value of a State

* Value (Utility) of being in a state is not the
same as the reward

First consider the utility of a state history. Can
be
— Additive: V([s,,s,,"-s,]1)=R(s;)+R(s,)+R(s,)
— Discounted: V([s,,s,,"s,])=R(s;)+VR(s,)+V2R(s;)
+...Van+1
— Where
« yis a discount factor between 0 and 1

Value of a State (cont’d)

* Don’t want to restrict ourselves to a finite

horizon.

For an infinite horizon:

— Additive: V([s,,s,,"])=R(s,)+R(s,)+"*-

— Discounted: V([s,s,,])=R(s;)+YR(s,)+V?R(s3) +

— yis a discount factor between 0 and 1

« If environment has no terminal state or if agent
never reaches one, undiscounted rewards will
generally lead to infinite value
— Discounted rewards result in finite state values

Why infinite horizon?

* Optimal policy for a finite horizon is non-

stationary
— Optimal action from a state can change

* Optimal policy for an infinite horizon is

stationary

— No reason to behave differently in the same state
at different times




2/24/17

Utility is directly linked to policy

Action Policy

* Deterministic policy: : S -> A
—1(s) gives the action to take in state s
* Probabilistic policy: m: Sx A -> [0, 1].
— (s, a) specifies a probability for choosing action a
in state s

* We’'ll focus on the former for now

Optimal Policies

* Want optimal policy
—n*S->A

* If followed, optimal
policy maximizes
expected utility (i.e.,
expected value)

* Find the expected value (expected utility) of each
state

* Choose the action that maximizes expected value
* Optimal values define optimal policies

Optimal Values (Utilities)

Note slight (but not significant) differences in S&B and R&N formulations

Define V*(S) to be the expected utility of acting
optimally from S.

Define Q*(S, a) to be the expected utility of taking
action a from state S and from there acting
optimally.

V(s)=max , Q*(s, a)
Q*(s,a) =2 P(s’ |s,a)[R(s") +y-V'(s")],
where the sum is over all s’

Bellman Equations

V*(s)=max , Q*(s, a)
Q*(s, a) =2 P(s" |s,a)[R(s") +y-V'(s')],
where the sum is over all s’

Definition of value (utility) leads to a simple one-
step lookahead relationship among optimal
utilities

Total optimal reward = optimize over choice of (first
action + optimal future)

[Adapted from CS 188 Berkeley]

Computing Optimal Values

* Calculating V*(s) just once won't give you the
optimal value
— Like doing a 1-step lookahead in expectimax

* If we look ahead o= steps, then we approach
the true optimum, V*(s)
— But we won’t do an expectimax search




Value Iteration

* Will calculate successive estimates V, * of V*
* Start with V,*(s) =0 for all s

* Given V;*, calculate the values for all states for
depth i+1

V.1 *(s) =max , Z P(s’ |s,a)[R(s") + y-V;*(s')]
* Throw out old vector V;*
* Repeat until convergence
* Called value update or Bellman update

[Adapted from CS 188 Berkeley]

2/24/17

Value Iteration Demos

* Allrewards are 1

* The value of a state is either the value itself or
the value + the penalty if you got there by
running into a wall (so in this case we aim to
minimize expected “reward”)

* PJOG = how badly you go off course
— 0 means your action does what you intended

— 0.3 means 70% of the time your action does what’s
intended; splits the 30% evenly among the remaining
options

* Discount rate (gamma) is always 1

Value Iteration: Exercise 1

* Smallest maze
* PJOG=0

* Demo

N R —
S R —
B

Value Iteration: Exercise 2

* Smallest maze
PJOG =0.75

— For any action, have .25 probability of taking any
of the four possible actions

* Notice what happens with the policy!

* Demo

Value Iteration: Exercise 3

* Smallest maze
* PJOG=0.3

— For any action, have .7 probability of taking that
action; .1 probability of taking each of the others

* Demo




2/24/17

Things to notice in the demos

* Value approximations get refined toward
optimal values

* Information propagates outward from the
terminal states until all states have correct
information

* The policy may converge long before the
values do




