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Games:	Expec0max	
Introduc0on	to	U0lity	Theory	

Andrea	Danyluk	
February	22,	2017	

Announcements	

•  Assignment	1		
– Code	reviews	today	and	tomorrow	
– Sign	up	by	4:00	PM	today	

•  Programming	Assignment	2	in	progress	

Today’s	Lecture	

•  Expec0max	
•  U0lity	Theory	

Mul0-Player	Games	

•  Evalua0on	func0on	might	return/returns	a	
vector	of	u0li0es	

•  Each	player	chooses	the	move	that	maximizes	
its	u0lity.	

Stochas0c	Games	 Expec0max	

•  Introduce	chance	nodes	into	a	minimax	tree	
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Expec0max	

•  Introduce	chance	nodes	into	a	minimax	tree	
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Evalua0on	Func0ons	Revisited	
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[From	Russell]	

In	Minimax	(with	Alpha-Beta	Pruning)	

Evalua0on	Func0ons	Revisited	

Behavior	is	preserved	only	under	posi0ve	linear	transforma0on	of	EVAL	

[From	Russell]	
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In	Expec0max	

Expec0max	Pacman	
def	value(s)	
	if	s	is	a	max	node	return	maxValue(s)	
	if	s	is	an	exp	node	return	expValue(s)	
	if	s	is	a	terminal	node	return	eval(s)	

def	maxValue(s)	
	values	=	[value(s1)	for	s1	in	succ(s)]	
	return	max(values)	

def	expValue(s)	
	values	=	[value(s1)	for	s1	in	succ(s)]	
	weights	=	[prob(s,s1)	for	s1	in	succ(s)]	
	return	expecta0on(values,	weights)	

[Verba0m	from	CS	188]	

Depth-limited	Expec0max	
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1	full	
move	

Don’t	forget:	Magnitudes	of	the	u0li0es	/	heuris0c	evalua0ons	need	to	be	meaningful.	

Why	Pacman	Can	Starve	

He	knows	his	score	can	go	up	by	ea0ng	now.	
He	knows	his	score	can	go	up	by	ea0ng	later.	
Within	this	search	window	there	are	no	other	ea0ng	opportuni0es.	

Probabili0es	
•  A	random	variable	represents	an	event	whose	outcome	is	

unknown	
•  A	probability	distribu2on	is	an	assignment	of	weights	to	

outcomes	
•  Example:	L	=	type	of	lunch	you’d	see	me	eat	today	

–  Outcomes:	L	in	(LunchBox,	Thai,	Subway)	
–  Distribu0on	:	P(L=LB)=0.85,P(L=T)=0.13,P(L=S)=0.02	

•  Some	laws	of	probability:	
–  Probabili0es	are	always	non-nega0ve	
–  Probabili0es	over	all	possible	outcomes	sum	to	1	

•  As	we	get	more	evidence,	probabili0es	may	change	
–  P(L=T)	=	0.15,	P(L=T|I	lunch	mee0ng)	=	.9	
–  But	let’s	not	worry	about	condi0onal	probabili0es	for	now	

[Adapted	from	CS	188	Berkeley]	
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Expecta0ons	

•  We	can	define	a	func0on	f(X)	of	a	random	
variable	X	

•  The	expected	value	of	a	func0on	is	its	average	
value,	weighted	by	the	probability	distribu0on	
over	inputs	

•  How	much	money	will	be	spent	on	lunch	
– M(LB)	=	$2.00,	M(T)	=	$12.00,	M(S)	=	$5.00	
– What	is	my	expected	lunch	payment?	

E(M(L))	=	M(LB)*P(LB)+M(T)*P(T)+M(S)*P(S)	
=	2.00(.85)+12.00(.13)+5.00(.02)	=	$3.36	

[Adapted	from	CS	188	Berkeley]	

Preferences	
(in	an	uncertain	world)	

•  An	agent	chooses	among	prizes	(e.g.,	X,	Y)	and	
lokeries	(situa0ons	with	uncertain	prizes)	

•  Lokery	L	=	[p,	X;	1-p,	Y]	

•  Nota0on:	
	

L	

X	

Y	

p	

1-p	

[This	and	the	following	either	taken	or	adapted	from	Russell]	

Ra0onal	Preferences	
•  Preferences	of	a	ra0onal	agent	must	obey	certain	constraints	

U0li0es	

•  A	u0lity	func0on	captures	an	agent’s	
preferences	
– DD	coffee	with	cream	only:	U(DD/C)	=	200	
– DD	coffee	with	cream	and	sugar:	U(DD/C&S)	=	1	

– TC	coffee	with	cream	only:	U(TC/C)	=	100	
– TC	coffee	with	cream	and	sugar:	U(TC/C&S)	=	1	

U0li0es:	Uncertain	Outcomes	

Dunkin	Donuts	 Tunnel	City	

0.8	 0.2	 1.0	 0.0	

0.8(200)	+	0.2(1)	=	160.2	 1.0(100)	+	0.0(1)	=	100	

MEU	Principle	
Theorem	[von	Neumann	and	Morgenstern,	1944]	
•  Given	preferences	sa0sfying	the	constraints	
(axioms	of	u0lity	theory),	there	exists	a	real-
valued	func0on	U	such	that	

•  An	agent	can	act	ra0onally	(i.e.,	consistently	with	
its	preferences)	only	if	it	chooses	an	ac0on	that	
maximizes	expected	u0lity	
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Class	Exercise	
St.	Petersburg	paradox	[Nicolas	Bernoulli,1713]	

You	have	the	opportunity	to	play	a	game	in	
which	a	fair	coin	is	tossed	repeatedly	un0l	it	
comes	up	heads.		If	the	first	heads	appears	on	
the	nth	toss,	you	win	2n	dollars.	

	
What	is	the	expected	monetary	value	of	this	
game?	

How	much	would	you	play	to	play	the	game?	

Paradox	Resolved	

Nicolas’s	cousin	Daniel	Bernoulli	resolved	the	
apparent	paradox	in	1738	by	sugges0ng	that	
the	u0lity	of	money	is	measured	on	a	log	
scale:	
		 	U(Sn)	=	a	log2	n	+	b,	where	
		 	 	 	Sn	is	the	state	of	having	$n	

	
What	is	the	expected	u0lity	of	the	game	under	
this	assump0on?	

Paradox	Resolved	
Nicolas’s	cousin	Daniel	Bernoulli	resolved	the	
apparent	paradox	in	1738	by	sugges0ng	that	the	
u0lity	of	money	is	measured	on	a	log	scale:	
	 	 	U(Sn)	=	a	log2	n	+	b,	where	
		 	 	 	Sn	is	the	state	of	having	$n	

	
What	is	the	expected	u0lity	of	the	game	under	this	
assump0on?	

What	is	the	maximum	amount	it	would	be	ra0onal	
to	play	to	play?	

Money	

•  Money	does	not	behave	as	a	u0lity	func0on,	
but	we	can	talk	about	the	u0lity	of	having	
money	(or	being	in	debt)	


