
2/22/17	

1	

Games:	
Efficiency	and	more	

Andrea	Danyluk	
February	20,	2017	

Announcements	

•  Programming	Assignment	1:	Search	
– Due	tomorrow	

•  Code	review	sign-up	
•  Programming	Assignment	2	posted	

Today’s	Lecture	

•  Making	minimax	more	efficient:	
– α-β	pruning		

Minimax	Reality	

•  Can	rarely	explore	enPre	search	space	to	
terminal	nodes.	

•  Choose	a	depth	cutoff	–	i.e.,	a	maximum	ply	
•  Need	an	evaluaPon	funcPon	
–  Returns	an	esPmate	of	the	expected	uPlity	of	the	
game	from	a	given	posiPon	

– Must	be	efficient	to	compute	
•  Trading	off	plies	for	heurisPc	computaPon	
•  More	plies	makes	a	difference	

•  Consider	iteraPve	deepening	

An	earlier	example	revisited	

7	 2	6	 3	 0	 6	-2	 5	2	 9	6	 2	

An	earlier	example	revisited	

2/22/17	

2	

7	

7	

7	

6	

7	

7	

7	

7	 6	

2/22/17	

3	

7	

7	 6	

7	

7	

7	 6	

7	

7	

7	 6	

7	

2	

7	

7	 6	

7	

2	

2	

7	

7	 6	

7	

2	

2	

3	

7	

7	 6	

7	

2	

3	

3	

2/22/17	

4	

7	

7	 6	

3	

2	

3	

3	

7	

7	 6	

3	

2	

3	

3	

3	

7	

7	 6	

3	

2	

3	

3	

3	

7	

7	 6	

3	

2	

3	

3	

3	

7	

7	 6	

3	

2	

3	

3	

3	

0	

7	

7	 6	

3	

2	

3	

3	

3	

0	

0	

2/22/17	

5	

7	

7	 6	

3	

2	

3	

3	

3	

0	

0	

-2	

7	

7	 6	

3	

2	

3	

3	

3	

0	

0	

-2	

7	 2	6	 3	 0	 -2	

7	 3	

3	

0	

Wow!	0	is	a	
great	score!	

0	

3	

7	 2	6	 3	 0	 -2	

7	 3	

3	

0	

I	wonder	if	I	
can	do	even	

be^er!	

0	

3	

7	 2	6	 3	 0	 -2	

7	 3	

3	

0	

Too	bad	the	
maximizer	

won’t	ever	let	
me	get	here!	

3	

0	

7	 2	6	 3	 0	 -2	

7	 3	

3	

0	

Be^er	not	to	
waste	my	
Pme!	

0	

3	

2/22/17	

6	

7	 2	6	 3	 0	 -2	

7	 3	

3	

0	

0	

3	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

3	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

3	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

3	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

5	

3	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

5	

6	

3	

2/22/17	

7	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

9	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

9	

Wow!		
9!	

2/22/17	

8	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

9	

Oh,	
wait!	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

9	

Min	
won’t	let	
me	go	
here!	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

9	

Min	
won’t	let	
me	go	
here!	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

9	

7	 2	6	 3	 0	 6	-2	

7	 3	

3	

0	

0	

5	

6	

6	

3	

6	

9	

9	

α-β		Pruning	

•  If	something	looks	too	good	to	be	true,	it	
probably	is.	

•  One	example	of	the	class	of	branch	and	bound	
algorithms	with	two	bounds	
– α	:	the	value	of	the	best	choice	for	Max	
– β	:	the	value	of	the	best	choice	for	min	

2/22/17	

9	

α-β		Pruning	

•  Given	these	two	bounds	
– α	:	the	value	of	the	best	choice	for	Max	
– β	:	the	value	of	the	best	choice	for	min	

•  Basic	idea	of	the	algorithm	
– On	a	minimizing	level,	if	you	find	a	value	<	α,	cut	
the	search	

– On	a	maximizing	level,	if	you	find	a	value	>	β,	cut	
the	search	

function αβSEARCH(state) returns an action a
 v = MAX-VALUE(state, -infinity, +infinity)

return action a in ACTIONS(state) with value v

function MAX-VALUE(state, α, β) returns a utility value v
 if TERMINAL-TEST(state) then return UTILITY(state)
 v = -infinity
 for each a in ACTIONS(state) do
 v = MAX(v, MIN-VALUE(RESULT(state, a), α, β))
 if v ≥ β then return v
 α = MAX(α, v)
 return v

function MIN-VALUE(state, α, β) returns a utility value v
 if TERMINAL-TEST(state) then return UTILITY(state)
 v = infinity
 for each a in ACTIONS(state) do
 v = MIN(v, MAX-VALUE(RESULT(state, a), α, β))
 if v ≤ α then return v
 β = MIN(β, v)
 return v

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	+inf	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	+inf	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	+inf	

α	=	8	
Β	=	+inf	

2/22/17	

10	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	+inf	

8	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	8	

8	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	8	

8	
α	=	-inf	
Β	=	8	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

α	=	-inf	
Β	=	8	

8	 9	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	-inf	
Β	=	+inf	

8	

8	 9	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

2/22/17	

11	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

α	=	8	
Β	=	+inf	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

2	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

2	
α	=	8	
Β	=	+inf	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

2	
α	=	8	
Β	=	+inf	

α	=	8	
Β	=	+inf	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

2	
α	=	8	
Β	=	+inf	

α	=	8	
Β	=	+inf	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

2	
α	=	8	
Β	=	+inf	

	8	

2/22/17	

12	

8	 4	7	 3	8	19	11	

2	

6	1	9	 5	

α	=	8	
Β	=	+inf	

8	

8	 9	

2	
α	=	8	
Β	=	+inf	

	8	

Is	there	a	problem	
here???	

function αβSEARCH(state) returns an action a
 v = MAX-VALUE(state, -infinity, +infinity)

return action a in ACTIONS(state) with value v

function MAX-VALUE(state, α, β) returns a utility value v
 if TERMINAL-TEST(state) then return UTILITY(state)
 v = -infinity
 for each a in ACTIONS(state) do
 v = MAX(v, MIN-VALUE(RESULT(state, a), α, β))
 if v ≥ β then return v
 α = MAX(α, v)
 return v

function MIN-VALUE(state, α, β) returns a utility value v
 if TERMINAL-TEST(state) then return UTILITY(state)
 v = infinity
 for each a in ACTIONS(state) do
 v = MIN(v, MAX-VALUE(RESULT(state, a), α, β))
 if v ≤ α then return v
 β = MIN(β, v)
 return v

Node	Order	Ma^ers	

5	7	2	4	8	10	8	7	3	

B	 D	C	

A	 MAX	

min	

Best	ordering	for	
maximum	pruning?	

Move	Ordering	

•  Can	we	order	moves	in	such	a	way	that	α-β	
will	prune	more	rather	than	less?	

•  Chess?	
•  Connect	4?	
•  Don’t	worry	about	this	for	Pacman	assignment	

ProperPes	of	α-β	
•  Pruning	does	not	affect	the	final	minimax	value	at	
the	root;	but	be	careful	about	comparisons	to	
guarantee	best	ac'on	is	selected	

•  Good	move	ordering	improves	effecPveness	of	
pruning	

•  If	search	depth	is	d,	what	is	the	Pme	complexity	
of	minimax?	
– O(bd)	

•  With	perfect	pruning,	can	get	down	to	O(b	d/2)	
– Doubles	solvable	depth	

[Adapted	from	Russell]	

Games	with	>	2	players	

•  Up	to	4	players	
•  Players	try	to	place	all	
21	of	their	pieces	

•  Hope	to	block	
opponents	from	placing	
their	pieces	

2/22/17	

13	

A	Four-Player	Game	

Blue	to	move	
	

Yellow	to	move	

Red	

Green	

…	

…	 …	

…	 …	 …	 …	

(5,7,2,9)	 (4,3,1,1)	 (2,6,10,2)	(6,4,19,8)	

(5,7,2,9)	(3,5,1,8)	 (8,7,6,5)	 (9,7,1,3)	 (4,3,2,1)	 (4,4,4,4)	 (6,4,19,8)	 (3,5,7,9)	

(5,7,2,9)	 (8,7,6,5)	 (4,4,4,4)	 (6,4,19,8)	

(5,7,2,9)	 (4,4,4,4)	

(5,7,2,9)	

MulP-Player	Games	

•  EvaluaPon	funcPon	returns	a	vector	of	uPliPes	
•  Each	player	chooses	the	move	that	maximizes	
its	uPlity.	

•  Is	Pacman	with	2	ghosts	a	mulP-player	game?	
	

