Problem Solving and Search

Andrea Danyluk
February 6, 2017

Announcements

* Progamming Assignment 0: Python Tutorial
— Optional / Ungraded
— Posted last week
— Due Thursday at 11pm

— No CS Unix account? Let me know!

Today’s Lecture

¢ Agents
* Goal-directed problem-solving and search
* Uninformed search

— Breadth-first

— Depth-first

* Formulating a problem as a search problem

Rational Agents

* An agent perceives and
acts.

* “Doing the right thing”
captured by a performance
measure that evaluates a
given sequence of
environment states.

m
5
g
El
s
El
8
2

A rational agent:
selects an action that is expected to maximize the
performance measure, given evidence provided by the
percept sequence and whatever built-in knowledge the
agent has.

¢ Rational # omniscient

— Percepts may not supply all relevant information
Rational # clairvoyant

— Action outcomes may not be as expected
Rational # successful

[Adapted from Russell]

Reflex Agents

Neuron 1o brain

* Act on the basis of the

Dorsal root
possibly what they Recepor TR 7

remember from the
past).

* May have memoryora f&\ Motor
model of the world’s
state.

* Do not consider future
consequences of their
actions.

[Adapted from CS 188 UC Berkeley]

2/8/17

Goal-based Agents

* Plan ahead

e Ask “what if”

* Decisions based on (hypothesized) consequences of
actions

* Have a model of how the world evolves in response
to actions

[Adapted from CS 188 UC Berkeley]

Building a goal-based agent

* Determine the percepts available to the agent

* Select/devise a representation for world
states

* Determine the task knowledge the agent will

need

Clearly articulate goal(s)

— Including what to optimize

Select/devise a problem-solving technique so

that the agent can decide what to do

Search as a Fundamental Problem-
Solving Technique

* Originated with Newell and Simon’s work on
problem solving in the late 60s.

Search Problems

A search problem consists of
* A state space

— A set of states

— As set of actions

— A transition model that specifies results of
applying actions to states
* Successor function: Result(s, a)

* Aninitial state
* Agoal test

An Example: the 8-Puzzle

1 2 3 1 2 3
8 7 4 5 6
6 5 4 7 8
Initial State Goal State

possible distinct states = 91 = 362,880 (but only 9!/2 reachable)

Real world examples

* Navigation

* Vehicle parking

* Parsing (natural and artificial languages)
— The old dog slept on the porch
— The old dog the footsteps of the young

And back to the 8-Puzzle

¢ States: 1] 2] 3
— Puzzle configurations s | 7
¢ Actions:
6 |5 | 4
— Move blank N, S, E, or W
¢ Start state:
— As given
» Goal test: P2
— Is current state = 4 5 6
specified goal state?
7|8

Finding a solution in a problem graph

* Solving the puzzle = finding a path through the
graph from initial state to goal state

* Simple graph search algorithms:
— Breadth-first search
— Depth-first search

< \‘ 1] |3
| State Space Graph 22
\\77777 77777/,//"7 \“ 6 f 4
| @ - a ® /,‘"‘ 1]2]3 1]2]3
[- / 8|7—18| |7
“‘ g ? / 6|5]a 6|5]a
| @ / |
| / 123 123
[6|8 8|5
\ ® [5|4 6| |4
\
Breadth-first Graph Search:
Review
Start: a

Goal: i

Explore vertices (really

edges) closest to the

start state first.

Fringe is a FIFO queue

2/8/17

Depth-first Graph Search:
Review

Start: a
Goal: i

Explore deepest vertex

really edge) first.

Fringe is a LIFO stack

Formalizing State Space Search

* A state space is a graph (V, E), where V is the
set of states and E is a set of directed edges
between states. The edges may have
associated weights (costs).

* Our exploration of the state space using
search generates a search tree.

[Adapted from Eric Eaton]

State Space Search in the Al World

* Rarely given a graph

* We don’t build the graph before doing the
search
— Our search problems are BIG

Search Trees NES W)

112(3
8|7
6(5|4
T
2(3 1123 1123
1/8|7 8 7 6|8
6|54 6|5|4 54
T
2 3 1 g 112(3 112(3 112(3
1|8|7 8|27 8|7 8|57 6(8|7
6|5|4 6|54 6|54 6 4 5 4
2|3 2|83 Search tree for BFS
108 1 7 White nodes = explored (i.e., expanded)

Orange nodes = fringe (or frontier)
Maintains an “explored” set of states to avoid redundant search

Search Tree

* A “what if” tree of plans and outcomes

* Start state at the root node

* Children correspond to successors

* Nodes contain states; correspond to plans to
those states

* Aim to build as little as possible

* Because we build the tree “on the fly” the

representations of states and actions matter!
[Adapted from CS 188 UC Berkeley]

Nodes in Search Trees

* A node in a search tree typically contains:
— A state description
— A reference to the parent node

— The name of the operator that generated it from
its parent

— The cost of the path from the initial state to itself
— Might also include its depth in the tree

* The node that is the root of the search tree
typically represents the initial state

Operators and Goal Tests

* Child nodes are generated by applying legal
operators to a node
— The process of expanding a node means to
generate all of its successor nodes and to add
them to the frontier.
* A goal test is a function applied to a state to
determine whether its associated node is a
goal node

Solutions in Search Trees

* Asolution is either

— A sequence of operators that is associated with a
path from start state to goal or

— A state that satisfies the goal test
* The cost of a solution is the sum of the edge
costs on the solution path

— If all edges have the same (unit) cost, then the
solution cost is just the length of the solution (i.e.,
the length of the path)

2/8/17

2/8/17

Framing a Problem as Search

* 8 Queens
— States?
— Goal test?
— Operators?

