Constraint Satisfaction

Andrea Danyluk May 1, 2017

Announcements

- · This week
 - Monday: Constraint satisfaction
 - Wednesday: "Mastering the Game of Go with Deep
 - Neural Networks and Tree Search" - Friday: "Computing Machinery and Intelligence"
- · Next week
 - Monday: Wrap-up
 - Wednesday-Friday: Final presentations and demos
- Watch for email with information about final project presentations and a survey to schedule

Today

· Constraint Satisfaction

Coming full circle: back to Problem Solving Not looking for a path. Looking for a state that satisfies a set of criteria.

A Constraint Satisfaction Problem

- Final exams are given on W, Th, F, and Sa
- No professor can give 2 exams on the same day, unless teaching two sections of the same course
- Multiple sections of 134/136/432 should be scheduled for the
- same day Students enrolled in 136 and 237 (or those enrolled in some combination of 373/ 375/237) shouldn't have
- to take those exams on the same day · Same for students in any
- combination of 256/334/432 Same for students in 373/432 Steve must give his exam
- (334) on W

One Solution Wed Thurs Fri Sat 334S 432JA 256B 134T 373A 237D 375JP 135D

136M

107M

Formally

- A CSP is a triple (X, D, C), where
- X is a set of variables
 - {107M, 134T, 135D, 136M, 237D, 256B, 334S, 373A, 375JP, 432JA}
- D is a set of domains, one for each variable
 - Domain is the same for all variables here
 - {W, Th, F, Sa}
- C is a set of constraints

Constraints for our CSP

```
C = {
    135D \neq 237D, 136M \neq 107M, 136M \neq 237D,
    373A \neq 432JA, 373A \neq 375JP \neq 237D,
    256B \neq 334S \neq 432JA,
    334S = W
}
```

Another Way to Express Constraints

```
C = {
      <(135D, 237D), {(W, Th), (W, F), (W, Sa),
            (Th, W), (Th, F), (Th, Sa), (F, W), (F, Th),
            (F, Sa), (Sa, W), (Sa, Th), (Sa, F)}>
      <(334S), {(W)}>
      etc.
    }
```

Global Constraints

- Generally involve all variables.
- E.g., Can't schedule more than three exams on any given day.

How to Solve our CSP?

- Formulate as a search problem
- State has variables 1...k assigned; variables (k+1) ... 10 unassigned, where the order of the variables is 107M, 134T, 135D, 136M, 237D, 256B, 334S, 373A, 375JP, 434JA.
- Initial State: no variables assigned
- Goal Test: All variables assigned and no constraints violated.
- Which search method???

A Simple Improvement

- Don't ever allow a successor that is inconsistent with its parent
- Goal test is now very simple: is the variable assignment complete?
- Consistency checking + 1 var at a time: "Backtracking Search"

Other Simple Improvements?

Consider the order in which we assign the variables

- Might it make sense to assign 334S first?
 - MRV (minimum remaining values) heuristic
- Select variables involved in the largest number of constraints on other unassigned variables
 - Degree heuristic

Another Simple Improvement: Forward Checking

- At start, for each variable, record the current set of possible legal values for it.
- When you assign a value in the search, update the set of legal values for all unassigned variables.
- Backtrack immediately if you empty a variable's constraint set, restoring legal values that were eliminated in the second point above.

Now Another Simple Improvement

- In what order should its values be tried?
 - Least-constraining value: rules out fewest choices in neighbors

Backtracking Search

- Assign a value to one variable at a time, maintaining consistency with previous assignments
- Improvements
 - Forward Checking
 - Heuristics for "next variable" selection
 - MR\
 - · Degree heuristic
 - Heursitics for "next value" assignment
 - · Least constraining value

Backtracking Search

- How to backtrack?
 - Chronological backtracking
 - If a branch of a search fails, back up to the preceding variable and try a different value

Our Solution Wed Thurs Sat 3345 432JA 256B 134T 373A 375JP 237D 135D 136M 107 Wed **Thurs** Sat 334S 432JA 256B 134T 373A 237D 375JP 135D 107M 136M

CSP Solvers vs State Space Searchers

- · State Space Search
 - States are, for the most part, atomic
 - Domain-specific heuristics
- CSP
 - Factored state representation; peek into states and consider relationships of states to each other
 - Domain-independent heuristics to speed up search

Real-World Examples

- · Assignment problems
 - Who teaches which class
- · Scheduling problems
 - Which exam is given when
- Floor planning/layout

An Early AI Example Labeling Line Drawings Waltz's algorithm Convex interior lines are labelled as + Concave interior lines are labeled as Boundary lines are labeled as Boundary lines are labelings But only 18 are legal: