
4/24/17	

1	

Deep	Learning	Wrap-Up	

Andrea	Danyluk	
April	24,	2017	

Parts	of	this,	as	well	as	parts	of	the	earlier	neural	net	slides,	were	adapted	from	Tom	Mitchell.	
Other	parts	draw	from	Deep	Learning	by	Goodfellow,	Bengio,	and	Courville	

Announcements	

•  AI/Ethics	discussion	on	Wednesday	

Today’s	Lecture	

•  Deep	Learning	Wrap-up	
•  Discussion:	Do	deep	convoluQonal	nets	need	
to	be	deep	and	convoluQonal?	

What	is	Deep	Learning?	
•  Represents	the	world	as	a	nested	hierarchy	of	
concepts	
–  Each	concept	defined	in	relaQon	to	simpler	concepts	
– More	abstract	representaQons	computed	in	terms	of	
less	abstract	ones	

•  An	arQficial	neural	network	with	many	layers	
•  Success	generally	not	due	to	simply	to	the	fact	
that	they	have	many	layers	
– Autoencoding	
–  ConvoluQon	
–  Recurrence	

Autoencoders	

•  Trained	to	copy	their	input	to	their	output	
– Typically	not	interested	in	the	decoding	piece	

•  TradiQonally	used	for	dimensionality	
reducQon	or	feature	learning	

Autoencoders	

2.2 Autoencoders as an initialization method

Autoencoders have many interesting applications, such as data compression, visualization, etc. But around
2006-2007, researchers [4] observed that autoencoders could be used as a way to “pretrain” neural networks.

Why? The reason is that training very deep neural networks is di�cult:

• The magnitudes of gradients in the lower layers and in higher layers are di↵erent,

• The landscape or curvature of the objective function is di�cult for stochastic gradient descent to
find a good local optimum,

• Deep networks have many parameters, which can remember training data and do not generalize well.

The goal of pretraining is to address the above problems. With pretraining, the process of training a deep
network is divided in a sequence of steps:

• Pretraining step: train a sequence of shallow autoencoders, greedily one layer at a time, using
unsupervised data,

• Fine-tuning step 1: train the last layer using supervised data,

• Fine-tuning step 2: use backpropagation to fine-tune the entire network using supervised data.

While the last two steps are quite clear, the first step needs needs some explanation, perhaps via an
example. Suppose I would like to train a relatively deep network of two hidden layers to classify some
data. The parameters of the first two hidden layers are W1 and W2 respectively. Such network can be
pretrained by a sequence of two autoencoders, in the following manner:

More concretely, to train the red neurons, we will train an autoencoder that has parameters W1 and W 0
1.

After this, we will use W1 to compute the values for the red neurons for all of our data, which will then
be used as input data to the subsequent autoencoder. The parameters of the decoding process W 0

1 will
be discarded. The subsequent autoencoder uses the values for the red neurons as inputs, and trains an
autoencoder to predict those values by adding a decoding layer with parameters W 0

2.

4

But	more	typically,	we	reduce	dimensionality	at	each	level.	

4/24/17	

2	

Deep	Belief	Networks	

•  Autoencoder	networks	learn	low	dimensional	
encodings	

•  With	more	layers,	can	learn	beWer	encodings	
•  AXer	each	individual	encoding	layer	has	been	
learned,	put	them	together	and	backpropagate	
to	tune	the	enQre	encoder-decoder	network	

Deep Belief Networks

•  Problem: training networks with many hidden layers
doesn’t work very well
–  local minima, very slow training if initialize with zero weights

•  Deep belief networks
–  autoencoder networks to learn low dimensional encodings

–  but more layers, to learn better encodings

[Hinton & Salakhutdinov, 2006]

Very	Large	Scale	DBNs	
[Quoc	Le	et	al.,	ICML	2012]	

•  Data:	10	million	200x200	unlabeled	images,	
sampled	from	YouTube	

•  Training:	1000	machines	(16000	cores)	for	one	
week	

•  Learned	network:	3	mulQ-stage	layers,	1.15	
billion	parameters	

•  Achieves	15.8%	accuracy	classifying	1	of	22K	
ImageNet	items	(sota	at	the	Qme	was	9.5%)	

One	Layer	

Building high-level features using large-scale unsupervised learning

the cortex. They also demonstrate that convolutional
DBNs (Lee et al., 2009), trained on aligned images of
faces, can learn a face detector. This result is inter-
esting, but unfortunately requires a certain degree of
supervision during dataset construction: their training
images (i.e., Caltech 101 images) are aligned, homoge-
neous and belong to one selected category.

Figure 1. The architecture and parameters in one layer of
our network. The overall network replicates this structure
three times. For simplicity, the images are in 1D.

3.2. Architecture

Our algorithm is built upon these ideas and can be
viewed as a sparse deep autoencoder with three impor-
tant ingredients: local receptive fields, pooling and lo-
cal contrast normalization. First, to scale the autoen-
coder to large images, we use a simple idea known as
local receptive fields (LeCun et al., 1998; Raina et al.,
2009; Lee et al., 2009; Le et al., 2010). This biologi-
cally inspired idea proposes that each feature in the
autoencoder can connect only to a small region of the
lower layer. Next, to achieve invariance to local defor-
mations, we employ local L2 pooling (Hyvärinen et al.,
2009; Gregor & LeCun, 2010; Le et al., 2010) and lo-
cal contrast normalization (Jarrett et al., 2009). L2
pooling, in particular, allows the learning of invariant
features (Hyvärinen et al., 2009; Le et al., 2010).

Our deep autoencoder is constructed by replicating
three times the same stage composed of local filtering,
local pooling and local contrast normalization. The
output of one stage is the input to the next one and
the overall model can be interpreted as a nine-layered
network (see Figure 1).

The first and second sublayers are often known as fil-
tering (or simple) and pooling (or complex) respec-
tively. The third sublayer performs local subtractive
and divisive normalization and it is inspired by bio-

logical and computational models (Pinto et al., 2008;
Lyu & Simoncelli, 2008; Jarrett et al., 2009).2

As mentioned above, central to our approach is the use
of local connectivity between neurons. In our experi-
ments, the first sublayer has receptive fields of 18x18
pixels and the second sub-layer pools over 5x5 over-
lapping neighborhoods of features (i.e., pooling size).
The neurons in the first sublayer connect to pixels in all
input channels (or maps) whereas the neurons in the
second sublayer connect to pixels of only one channel
(or map).3 While the first sublayer outputs linear filter
responses, the pooling layer outputs the square root of
the sum of the squares of its inputs, and therefore, it
is known as L2 pooling.

Our style of stacking a series of uniform mod-
ules, switching between selectivity and toler-
ance layers, is reminiscent of Neocognition and
HMAX (Fukushima & Miyake, 1982; LeCun et al.,
1998; Riesenhuber & Poggio, 1999). It has also
been argued to be an architecture employed by the
brain (DiCarlo et al., 2012).

Although we use local receptive fields, they are
not convolutional: the parameters are not shared
across different locations in the image. This is
a stark difference between our approach and pre-
vious work (LeCun et al., 1998; Jarrett et al., 2009;
Lee et al., 2009). In addition to being more biolog-
ically plausible, unshared weights allow the learning
of more invariances other than translational invari-
ances (Le et al., 2010).

In terms of scale, our network is perhaps one of the
largest known networks to date. It has 1 billion train-
able parameters, which is more than an order of magni-
tude larger than other large networks reported in liter-
ature, e.g., (Ciresan et al., 2010; Sermanet & LeCun,
2011) with around 10 million parameters. It is
worth noting that our network is still tiny com-
pared to the human visual cortex, which is 106

times larger in terms of the number of neurons and
synapses (Pakkenberg et al., 2003).

3.3. Learning and Optimization

Learning: During learning, the parameters of the
second sublayers (H) are fixed to uniform weights,

2The subtractive normalization removes the
weighted average of neighboring neurons from the
current neuron gi,j,k = hi,j,k −

∑

iuv Guvhi,j+u,i+v

The divisive normalization computes yi,j,k =
gi,j,k/max{c, (

∑

iuv Guvg
2
i,j+u,i+v)

0.5}, where c is set
to be a small number, 0.01, to prevent numerical errors.
G is a Gaussian weighting window. (Jarrett et al., 2009)

3For more details regarding connectivity patterns and
parameter sensitivity, see Appendix B and E.

Local	RecepQve	Fields	–	not	convoluQonal	

L2	pooling	

Local	Contrast	NormalizaQon	

Examining	Specific	Learned	Features	
Very Large Scale Use of DBN’s
Data: 10 million 200x200 unlabeled images, sampled from YouTube
Training: use 1000 machines (16000 cores) for 1 week
Learned network: 3 multi-stage layers, 1.15 billion parameters
Achieves 15.8% (was 9.5%) accuracy classifying 1 of 20k ImageNet items

[Quoc Le, et al., ICML, 2012]

Real
images
that most
excite the
feature:

Image
synthesized
to most
excite the
feature:

