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Announcements	

•  Classifier	learning	assignment	in	progress	
•  Final	project	
– Schedule/deliverables	posted	on	the	course	
website	

Today’s	Lecture	

•  Finishing	up	with	neural	nets	and	backprop	
•  Pomerleau	papers	

ArKficial	Neural	Networks	

•  Characterized	by:	
– A	large	number	of	(simple)	neuronlike	processing	
elements	

– A	large	number	of	weighted	connecKons	between	the	
elements	

– Highly	parallel,	distributed	control	
– An	emphasis	on	learning	internal	representaKons	
automaKcally	

•  TheoreKcally	principled	training	algorithms	that	
aim	to	minimize	an	objecKve	funcKon	(error)	

ALVINN 

[Pomerleau 1993] 

An	ArKficial	Neuron:	
the	Perceptron	

		

 
Complexity arises out of connectivity. 
 
Idea: collection of simple cells leads to complex behavior: thought, action, etc. 
 
How is this related to learning?  There is evidence of learning – plasticity – at synapses. 
 
 

How it Works 
 
Each neuron has branching from it a number of small fibers called dendrites and a single 
long fiber, the axon.  The axon eventually splits and ends in a number of synapses which 
connect the axon to the dendrites of other neurons.  Communication between neurons 
occurs along these paths.  When the electric potential in a neuron rises above a threshold, 
the neuron activates.  The neuron sends the electrical impulse down the axon to the 
synapses.  A synapse can either add to the electrical potential or subtract from the 
electrical potential.  The pulse then enters the connected neuron’s dendrites, and the 
process begins again. [Burns, 1998] 
 

 
Rich History 

 
1943: Warren McCulloch and Walter Pitts propose a model of artificial neurons. 
 
Two views: 
- neural network as a model of the brain 
- neural network as a representation of complex functions 
 
We will look only at the second of these.  Our (artificial) neural networks are not faithful 
models of real neural networks.  Instead, they are computationally interesting abstractions 
of neural networks. 
 
 

An Artificial Neuron (image from Mitchell) 

 
Note that this is slightly different from the Russell and Norvig formulation.  In theirs, x0 
always has value -1, rather than 1. 
Note	slight	difference	from	the	R&N	
formulaKon.		In	theirs,	x0	always	has	value	-1,	
rather	than	1.	
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AcKvaKon	FuncKons	
 

Activation Functions 
 

 
 
 
step(x) =  ⎧ 1, if x > t 
  ⎨ 
       ⎩  0, if x ≤ t 
sometimes also called a threshold function, due to the threshold t. 
 
sign(x) =  ⎧ +1, if x > 0 
  ⎨ 
       ⎩  -1, if x ≤ 0 
 
 

Using Artificial Neurons to Simulate Logic Gates 
 
Artificial neurons such as the one pictured above can be used to simulate logic gates.  So, 
for example, if we followed the structure of the neuron above but substituted the step 
function for the sign function, the following weights would allow us to simulate AND, 
OR, and NOT, respectively. 
 
AND: w0 = -1.5, w1 = 1, w2 = 1. 
OR: w0 = -0.5, w1 = 1, w2 = 1. 
AND: w0 = -0.5, w1 = -1. 
 
w0 serves as the threshold (or, more accurately, the negative of the threshold).  So, for the 
AND, the threshold is 1.5 
 
Note that there are many different threshold values that could have been used in each of 
the neurons above with the same effect. 
 
 

Gradient	Descent	

The	Sigmoid	Unit	

		

 
The bad news: So far, we've only seen a learning algorithm for single perceptrons, which 
can only represent linearly separable functions. 
 
What we need is a learning algorithm for multilayer networks. 
 
 

Backpropagation Procedure 
 
We will take the structure of the network to be given.  As before, the learning procedure 
will learn the network weights. 
 
The algorithm below assumes a feedforward network with input layer, output layer, and 
one hidden layer. 
 
A high level view of the algorithm: 
 
Initialize weights.  Until the performance of the network is “satisfactory”: 
 
Present the training instances one at a time.  For each training instance 
- Do a forward pass through the network; calculate the actual output. 
- Do a backward pass, computing weight changes 
- Calculate the error at the output nodes. Compute weight adjustment from hidden 

layer to output layer. 
- Calculate error at hidden layer.  Compute weight adjustment from initial layer to 

hidden layer. 
- Do the weight adjustment. 
 
 

Requirements: A Smooth Threshold Function 
 
While we considered multilayered networks of perceptrons as our motivation for needing 
the backpropagation learning algorithm, we will find that backpropagation requires the 
derivative of the activation function – so we don’t want to use the step or sign functions. 
 
Instead, we’ll consider networks of artificial neurons that use the sigmoid function as the 
activation function [from Mitchell]: 
 

 
 

•  σ(x)	Is	the	sigmoid	funcKon:	1	/	(1+e-x)	
•  dσ(x)/dx	=	σ(x)(1-σ(x))	
•  Can	derive	a	gradient	descent	rule	to	train	
•  One	sigmoid	unit	
•  MulKlayer	networks	of	sigmoid	units	

	
	
	

Error	Gradient	for	a	Sigmoid	Unit	

xd = input 

td = target output 

od = observed unit 
output 

wi = weight i 

 
The bad news: So far, we've only seen a learning algorithm for single perceptrons, which 
can only represent linearly separable functions. 
 
What we need is a learning algorithm for multilayer networks. 
 
 

Backpropagation Procedure 
 
We will take the structure of the network to be given.  As before, the learning procedure 
will learn the network weights. 
 
The algorithm below assumes a feedforward network with input layer, output layer, and 
one hidden layer. 
 
A high level view of the algorithm: 
 
Initialize weights.  Until the performance of the network is “satisfactory”: 
 
Present the training instances one at a time.  For each training instance 
- Do a forward pass through the network; calculate the actual output. 
- Do a backward pass, computing weight changes 
- Calculate the error at the output nodes. Compute weight adjustment from hidden 

layer to output layer. 
- Calculate error at hidden layer.  Compute weight adjustment from initial layer to 

hidden layer. 
- Do the weight adjustment. 
 
 

Requirements: A Smooth Threshold Function 
 
While we considered multilayered networks of perceptrons as our motivation for needing 
the backpropagation learning algorithm, we will find that backpropagation requires the 
derivative of the activation function – so we don’t want to use the step or sign functions. 
 
Instead, we’ll consider networks of artificial neurons that use the sigmoid function as the 
activation function [from Mitchell]: 
 

 
 

BackpropagaKon	
Algorithm	

xd = input 

td = target output 

od = observed unit 
output 

wij = wt from i to j 

(MLE) 

Paper	Discussion	

•  Pioneering	work	in	autonomous	vehicles	
•  Dean	Pomerleau	‘87	


