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Finishing	Up	with	Decision	Trees		
Neural	Nets	
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April	14,	2017	

Announcements	

•  Read	Pomerleau	papers	for	Monday	
•  Classifier	learning	assignment	in	progress	
•  Final	project	
– Schedule/deliverables	posted	on	the	course	
website	

Today’s	Lecture	

•  Finishing	up	with	decision	trees	
•  Neural	Nets	

Dealing	with	Noise:	
the	problem	of	overfiOng	

•  OverfiOng	=	the	problem	of	finding	
meaningless	regularity	in	the	data	

•  A	potenRal	problem	for	all	classifier	learning	
algorithms.	

•  SoluRon	for	decision	trees:	
– Decide	that	tesRng	more	aTributes	along	a	
parRcular	path	will	not	improve	the	predicRve	
accuracy	of	the	decision	tree.	

– Called	pruning.	

Reduced	Error	Pruning	
•  Pruning	consists	of	replacing	a	non-leaf	node	
with	a	leaf	and	assigning	it	the	most	common	
classificaRon	of	the	training	examples	associated	
with	that	node.	

•  Reserve	a	set	of	examples	to	be	used	as	a	
pruning	set.	(DisRnct	from	the	training	set.)	

•  AZer	a	full	tree	has	been	constructed,	
–  In	postorder	fashion,	traverse	the	tree.	
–  Replace	a	non-leaf	with	a	leaf	when	the	error	rate	of	
the	leaf	is	no	worse	than	the	error	rate	of	the	subtree	
on	the	pruning	set.	

Bias	in	ATribute	SelecRon	

•  The	informaRon	gain	criterion	is	biased	in	
favor	of	tests	with	many	outcomes.	

•  Consider	a	medical	diagnosis	data	set,	where	
one	of	the	aTributes	is	social	security	number.		
What	will	happen	if	you	try	to	split	on	this	
aTribute?	
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Gain	RaRo	Criterion	

•  ATempt	to	normalize	the	apparent	gain	of	
aTribute	X.	
Let	split	info	(X)	=	-Σ	(|Ti|/|T|)*log2|Ti|/|T|,	
where	the	sum	is	over	the	possible	values	of	
aTribute	X.	
	

gain	raRo	(X)	=	gain(T,	X)	/	split	info	(X)		

ArRficial	Neural	Networks	

•  Characterized	by:	
– A	large	number	of	(simple)	neuronlike	processing	
elements	

– A	large	number	of	weighted	connecRons	between	the	
elements	

– Highly	parallel,	distributed	control	
– An	emphasis	on	learning	internal	representaRons	
automaRcally	

•  TheoreRcally	principled	training	algorithms	that	
aim	to	minimize	an	objecRve	funcRon	(error)	

Why	Neural	Nets?	
CogniRve	PerspecRve	

•  Solving	problems	under	constraints	similar	to	
those	of	the	brain	may	lead	to	soluRons	to	AI	
problems	that	might	otherwise	be	overlooked.	
–  Individual	neurons	operate	relaRvely	slowly,	but	
make	up	for	that	with	massive	parallelism	

– Neurons	are	failure-prone	devices,	but	make	up	
for	that	with	distributed	representaRons	

– Neurons	promote	approximate	matching:	a	less	
briTle	system	

Parts	of	a	Neuron	

 
Connectionist Models of Learning 

 
Artificial Neural Networks 
 
Characterized by: 
- A large number of very simple neuronlike processing elements 
- A large number of weighted connections between the elements 
- Highly parallel, distributed control 
- An emphasis on learning internal representations automatically 
 

 
Why Neural Nets? 

 
Solving problems under constraints similar to those of the brain may lead to solutions to 
AI problems that might otherwise be overlooked. 
 
Individual neurons operate relatively slowly, but make up for that with massive 
parallelism.  
 
Neurons are failure-prone devices, but make up for that with distributed 
representations. 
 
Neurons promote approximate matching; a less brittle system. 
 
 

The Parts of a Neuron (image from Russell and Norvig) 
 

 

Evidence	of	learning	–	plasRcity	–	at	the	synapses.	

[Russell	&	Norvig]	

How	it	Works	
(at	a	very	high	level)	

•  Branching	from	each	neuron	are:	
–  a	number	of	small	fibers	--	dendrites		
–  a	single	long	fiber,	the	axon	

•  Axon	splits	and	ends	in	a	number	of	synapses	
–  these	connect	the	axon	to	the	dendrites	of	other	neurons	

•  CommunicaRon	occurs	along	these	paths	
•  When	the	electric	potenRal	in	a	neuron	rises	above	a	
threshold,	the	neuron	acRvates.		It	sends	the	electrical	
impulse	down	the	axon	to	the	synapses.	

•  A	synapse	can	either	add	to	the	electrical	potenRal	or	
subtract	from	it.	

•  The	pulse	then	enters	the	connected	neuron’s	
dendrites,	and	the	process	begins	again.	

Rich	History	

•  1943:	Warren	McCulloch	and	Walter	PiTs	
propose	a	model	of	arRficial	neurons	

•  Two	views:	
– Neural	network	as	a	model	of	the	brain	
– Neural	network	as	a	representaRon	of	complex	
funcRons*	

*	Not	faithful	models	of	real	neural	networks	
*	ComputaRonally	interesRng	abstracRons	



4/14/17	

3	

An	ArRficial	Neuron:	
the	Perceptron	

		

 
Complexity arises out of connectivity. 
 
Idea: collection of simple cells leads to complex behavior: thought, action, etc. 
 
How is this related to learning?  There is evidence of learning – plasticity – at synapses. 
 
 

How it Works 
 
Each neuron has branching from it a number of small fibers called dendrites and a single 
long fiber, the axon.  The axon eventually splits and ends in a number of synapses which 
connect the axon to the dendrites of other neurons.  Communication between neurons 
occurs along these paths.  When the electric potential in a neuron rises above a threshold, 
the neuron activates.  The neuron sends the electrical impulse down the axon to the 
synapses.  A synapse can either add to the electrical potential or subtract from the 
electrical potential.  The pulse then enters the connected neuron’s dendrites, and the 
process begins again. [Burns, 1998] 
 

 
Rich History 

 
1943: Warren McCulloch and Walter Pitts propose a model of artificial neurons. 
 
Two views: 
- neural network as a model of the brain 
- neural network as a representation of complex functions 
 
We will look only at the second of these.  Our (artificial) neural networks are not faithful 
models of real neural networks.  Instead, they are computationally interesting abstractions 
of neural networks. 
 
 

An Artificial Neuron (image from Mitchell) 

 
Note that this is slightly different from the Russell and Norvig formulation.  In theirs, x0 
always has value -1, rather than 1. 
Note	slight	difference	from	the	R&N	
formulaRon.		In	theirs,	x0	always	has	value	-1,	
rather	than	1.	

AcRvaRon	FuncRons	
 

Activation Functions 
 

 
 
 
step(x) =  ⎧ 1, if x > t 
  ⎨ 
       ⎩  0, if x ≤ t 
sometimes also called a threshold function, due to the threshold t. 
 
sign(x) =  ⎧ +1, if x > 0 
  ⎨ 
       ⎩  -1, if x ≤ 0 
 
 

Using Artificial Neurons to Simulate Logic Gates 
 
Artificial neurons such as the one pictured above can be used to simulate logic gates.  So, 
for example, if we followed the structure of the neuron above but substituted the step 
function for the sign function, the following weights would allow us to simulate AND, 
OR, and NOT, respectively. 
 
AND: w0 = -1.5, w1 = 1, w2 = 1. 
OR: w0 = -0.5, w1 = 1, w2 = 1. 
AND: w0 = -0.5, w1 = -1. 
 
w0 serves as the threshold (or, more accurately, the negative of the threshold).  So, for the 
AND, the threshold is 1.5 
 
Note that there are many different threshold values that could have been used in each of 
the neurons above with the same effect. 
 
 

The	Perceptron	Learning	Algorithm	
IniRalize	weights	to	arbitrary	values	(perhaps	in	the	range	
-.05	to	.05)	
Complete	n	training	epochs:	

	For	each	example	e	in	the	training	set:	
	 	Send	it	through	the	perceptron.	
	 	If	the	output	of	the	perceptron	doesn’t	match	the	
	 	target	output:	
	 	 	Adjust	the	weights.		If	the	desired	output	is	

	 	 	 	posiRve,	increase	the	weights	associated	with	
	 	 	 	posiRve	inputs;	decrease	weights	associated	
	 	 	 	with	negaRve	inputs.		And	vice	versa.	

The	Perceptron	Update	Rule	

Δwi	=	r(t	-	o)xi	
	
Where		
	wi	is	the	ith	weight	
	xi	is	the	ith	input	
	t	is	the	target	output	
	o	is	the	observed	output	
	r	is	the	learning	rate	

Beyond	IntuiRve	Appeal	
•  ObjecRve:	Find	weights	that	minimize	error	on	
the	training	set.	

•  Define	an	error	funcRon.		E.g.	
	 	 	 	 	 	½(t-o)2	

•  Compute	the	gradient	of	the	error	funcRon	
where		
	 	 	 	 	o	=	w0x0+w1x1+…wnxn	

•  Moving	in	the	direcRon	opposite	the	gradient	
pushes	us	toward	a	weight	vector	that	minimizes	
error	

AcRvaRon	FuncRons	
 

Activation Functions 
 

 
 
 
step(x) =  ⎧ 1, if x > t 
  ⎨ 
       ⎩  0, if x ≤ t 
sometimes also called a threshold function, due to the threshold t. 
 
sign(x) =  ⎧ +1, if x > 0 
  ⎨ 
       ⎩  -1, if x ≤ 0 
 
 

Using Artificial Neurons to Simulate Logic Gates 
 
Artificial neurons such as the one pictured above can be used to simulate logic gates.  So, 
for example, if we followed the structure of the neuron above but substituted the step 
function for the sign function, the following weights would allow us to simulate AND, 
OR, and NOT, respectively. 
 
AND: w0 = -1.5, w1 = 1, w2 = 1. 
OR: w0 = -0.5, w1 = 1, w2 = 1. 
AND: w0 = -0.5, w1 = -1. 
 
w0 serves as the threshold (or, more accurately, the negative of the threshold).  So, for the 
AND, the threshold is 1.5 
 
Note that there are many different threshold values that could have been used in each of 
the neurons above with the same effect. 
 
 


