
A Library to Support a Graphics-Based
Object-First Approach to CS 1

Kim B. Bruce Andrea Danyluk, and Thomas Murtagh
Department of Computer Science

Williams College
Williamstown, MA 01267

kim,andrea,tom@cs.williams.edu

Abstract

In this paper we describe a library we have developed
that supports an “OO-from-the-beginning” approach to
CS 1. The design of interactive graphical programs
helps students to both use objects and write methods
early while designing and implementing interesting pro-
grams. The use of real graphics “objects” and event-
driven programming are important components of this
approach.

1 Introduction

In the fall of 1999, the authors developed a new version
of the introductory Computer Science course (CS 1) at
Williams College. Our goals were as follows:

• Use an object-first approach, requiring students to
think from the start about the programming process
with a focus on methods and objects.

• Use graphics and animation extensively. Experience
in an earlier version of this course convinced us that
graphics can be an important tool both because stu-
dents are able to create more interesting programs,
and because graphic displays provide students with
visual feedback when they make programming errors.

• Introduce event-driven programming early. Most
programs students use today are highly interactive.
Writing programs that are similar to those they use
is both more interesting and more “real” to the stu-
dents. This goal was motivated, in part, by Stein [11].

Copyright 2001 by the Association for Computing Machinery, Inc.
To appear in SIGCSE 2001.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permis-
sions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

As we developed the course, we found that these seem-
ingly disparate goals complemented each other.

In this paper we discuss our goals and methods for
achieving them, focusing on how our locally-designed li-
brary, ObjectDraw, allowed us to overcome potentially
large hurdles to the use of Java with novice program-
mers.

2 Motivation

Two of our fundamental goals, the desire to use graphics
and the desire to teach using an objects-first approach,
provided the motivation to construct our graphics li-
brary and influenced its organization.

As we began the design of our course, the goal of empha-
sizing the use of an object-oriented style from the first
lecture presented the most obvious challenges. Before
a student can begin to learn mechanisms for defining
and using classes, the student must master a significant
amount of material. The student must learn to define
methods. If the examples used are to adequately moti-
vate the use of objects, the student must know how to
declare and use parameter names. For all but the most
trivial examples, at least conditional control structures
are required. Initially, it seemed that several weeks
would be required to present these prerequisites before
object-oriented features could be introduced.

We felt that the most promising approach to this prob-
lem was to integrate the use of pre-defined classes of
objects into our introduction to programming basics.
In this way, we could familiarize the students with
the object-oriented notion that work is accomplished
by sending messages to objects. In addition, because
students use these objects without knowing how they
are implemented, they develop a sense of the appropri-
ate level of encapsulation/abstraction to be used before
learning to define their own classes.

Others who have employed this approach have often
used collections of classes implementing “micro-worlds”.
The object-oriented version of Karel [2] provides an en-

vironment in which students write short programs to
manipulate robot objects through methods. Faculty at
Wellesley College have created several micro-worlds to
illustrate aspects of object-oriented programming.

Our desire to use graphics extensively in the course
made it clear that we would need to develop a set of
classes to simplify the use of Java’s graphics facilities.
The Java AWT does not provide an interface that is ap-
pealing for an introductory course. The need to do all
actual drawing in a single paint method implies that
a program must maintain enough state to communi-
cate the desired appearance of the display to the paint
method. For all but the simplest examples, this requires
complex data structures that are far out of reach during
the first weeks of an introductory course.

While we initially viewed the need for a graphics li-
brary and the need for an appropriate “micro-world” as
independent problems, we quickly realized that a sin-
gle library could fulfill both needs. We saw that if we
could design a graphics library simple enough to pro-
vide the means to introduce students to the use of ob-
jects and methods, it would actually be better than us-
ing a micro-world because it would be integrated into
the entire course. Accordingly, we set out to construct
a graphics library whose design would emphasize the
object-oriented approach.

3 An Object-oriented Graphics Library

Others have recognized that the graphics facilities pro-
vided by Java’s AWT were unsuitable for an introduc-
tory course and created libraries to simplify graphics
programming. The methods defined by such libraries
perform the requested drawing in an off-screen buffer.
The libraries also include a paint (or draw) method
that copies this off-screen buffer to the screen.(See [5]
and [1], for example.)

The resulting libraries generally fail to exhibit object-
oriented concepts. Their designs typically parallel the
underlying Java AWT Graphics class. There is a sin-
gle object with a name like “pen” (or “turtle” in the
case of Slack’s turtle graphics [9]) which accepts a long
list of drawing methods. In many such libraries, there
are no run-time objects corresponding to the geometric
shapes displayed on the screen. In some, one can create
“rectangles” and/or “lines” as objects, but the degree
to which these correspond to the objects on the screen
is limited. One may be allowed to provide a “rectangle”
object as a parameter to a “pen” drawing method, but
if there are any methods available to modify the rectan-
gle object itself, applying them will have no immediate
effect on the display.

In designing our library we took a different approach
which we felt would enable us to make the behavior

of objects very concrete for our students. We pro-
vide classes for a series of objects that can be pro-
duced on the display: Lines, Rectangles, Ovals, Text,
etc. When one of these objects is constructed using
the “new” operator, it actually appears on the screen.
In addition, there is a list of methods that can be
used to modify each of these objects: move, setColor,
setWidth, etc. Again, if any of these methods are in-
voked, the screen is updated (essentially immediately)
to reflect the requested change.

Internally, the implementation of our library is slightly
different from the off-screen buffer approach described
above. We define a class called DrawingCanvas that
represents a drawing area on the screen. When a graph-
ical object is created, the programmer must specify the
canvas on which it should appear. Each canvas is im-
plemented as a list of graphical objects rather than as
an off-screen bit map. When either the system requests
a repaint of the screen or the user’s code modifies any
object, our library’s version of paint erases the entire
screen and redraws all the objects in each canvas. For-
tunately, we found this simple technique performed ef-
ficiently enough that screen updates appear to occur
instantaneously.

This collection of graphical objects and the methods
associated with them have provided an excellent frame-
work for introducing the notion of objects to our stu-
dents. The fact that the objects produced by construc-
tors are not abstract, but are concrete and visible on the
screen, makes it very easy for students to appreciate the
connection between their code and its behavior.

Introducing the library takes very little time. We con-
structed an application that provides a virtual sand-
box through which students can experiment with the
effects of invoking the constructors and methods associ-
ated with these classes by clicking on buttons in a dis-
play. In our first lab, after only one session of class time
devoted to Java and the graphics library, students are
able to familiarize themselves with the library by com-
pleting a set of guided exercises in this environment.
By the end of the lab period, they abandon the “virtual
sandbox” and write a Java applet that uses our library
to produce a diagram of a simple road sign that varies
in reaction to mouse actions.

4 Advantages of Event-Driven Programming

In addition to the graphics features described in the pre-
ceding section, our library provides support for the use
of an event-driven style of programming. Introducing
event-driven programming was one of our fundamental
goals. Surprisingly, we have found that using this ap-
proach simplifies the process of preparing students to
use object-oriented techniques. In particular, the use of

the event-driven style helps us familiarize our students
with the definition of methods and the overall structure
of classes.

The first programs written by students in our course
are defined as classes that extend a WindowController
class from our library. WindowController is itself a
slight extension of the Java Applet class. It creates a
DrawingCanvas in which the students can place graph-
ical objects, and it allows them to handle mouse events
by defining event-handling methods with names like
onMouseMove and onMouseDown. These methods are
very similar to the mouse event-handling methods of
the Java AWT. The main difference is that they expect
a simple parameter describing the coordinates where
the mouse event occurred, rather than a more complex
“Event” object.

From the start, our students’ programs are class defini-
tions that consist of lists of short event-handling method
definitions. Such a class definition is much more typical
of other classes than a class definition containing a sin-
gle, large method that functions as a “main” program.
While our students are not at first conscious of the pos-
sibility of generalizing the use of the class construct to
define new objects, they learn to view methods as a
means of describing how a single object (their program)
should respond to outside stimuli.

The definition of event-handling methods also has the
advantage that the introduction of formal parameters is
separated from the introduction of actual parameters.
Students use formal parameters when defining event-
handling methods, but do not have to worry about
where the actual values come from. At the same time,
they are actively using actual parameters when invoking
the constructors and methods of our graphics library.
By the time we introduce the definition of new classes
of objects, students are comfortable with both notions
and are well prepared to deal with the idea that a for-
mal name written in one part of their code can refer to
an actual parameter from another part.

In conjunction with the use of objects through our
graphics library, the event-handling style of program-
ming provides an excellent way to prepare students for
the introduction of classes. By the time we begin asking
students to define their own classes, they have already
used all of the required language mechanisms. Instead
of explaining parameter passing or class syntax, we can
focus on the role of objects.

To provide a concrete sense of the features of both our
graphics library and the use of event-driven techniques
in our course, in Figure 1 we show a simple program
that uses our library. When this program is run, the
begin method, which is similar to the init method for
Applets, is executed. It constructs a red ball, a box,

and a text item that all show up immediately on the
screen. When the mouse button is pressed, the pro-
gram remembers the coordinates, point, where it was
pressed, and whether point is actually within the ball.
When the user drags the mouse, the ball is moved if
the ball was originally grabbed. When the mouse is re-
leased, the ball is moved back to its starting position
if the ball was being dragged and the release point is
inside the box.

public class DragBall extends WindowController
{
private FilledOval ball; // ball
private FilledRect box; // box
private Coords lastPos; // last mouse posn

// whether the ball has been grabbed
private boolean ballGrabbed = false;

// make the box
protected void begin()
{
ball = new FilledOval(95,50,10,10, canvas);
ball.setColor(Color.red);
box = new FilledRect(90,150,20,20, canvas);
new Text("Drag the ball!", 75,20, canvas);

}

// Save starting point and if point in box
protected void onMousePress(Coords point)
{
lastPos = point;
ballGrabbed = ball.contains(point);

}

// if mouse is in box, then drag the box
protected void onMouseDrag(Coords point)
{
if (ballGrabbed) {
ball.move(point.getX()-lastPos.getX(),

point.getY()-lastPos.getY());
lastPos = point;

}
}

// if dragged into box, move back to start
protected void onMouseRelease(Coords point)
{
if (ballGrabbed && box.contains(point))
ball.moveTo(200,100);

}
}

Figure 1. Simple objectdraw program

5 Lab Assignments using the ObjectDraw Library

To clarify the sequence in which we introduce topics to
our students and to demonstrate the flexibility our li-
brary provides, we provide a sketch of the programming
assignments we have used during the first few weeks
of our course. Students are assigned one program per
week through most of the semester. As mentioned ear-
lier, students begin in the first week (after only one real
lecture session) with a tutorial-format introductory lab
which introduces them to the use of our graphics classes.

Lab 1. The week after the tutorial lab, students write
a “laundry sorter” program. When completed, the pro-
gram allows its user to drag colored rectangles repre-
senting items of clothing to one of three bins designated
for whites, darks and colors. The code for this program
is structurally similar to that for the example program
shown in Figure 1. It is more complicated in that the
students must include code to create several bins rather
than one, code to generate items of random colors and
an if statement to see if the correct bin was selected.

Lab 2. The next lab tests students’ abilities to design
and implement classes. The assignment is to construct a
magnet class, where a magnet is represented as a rectan-
gle with the poles located near the ends. Two magnets
are drawn on the screen, and the program enables users
to drag them about. When one magnet is moved close
to the other, it attracts or repels the other. The instruc-
tors provide the class definition for the poles. Again no
loops are needed.

Lab 3. In the third week of class, we introduce students
to the idea of simple animation. More fundamentally,
however, students are introduced to the notions of loops
and a simple form of concurrency. The lab involves
implementing a simple game in which a user tries to
drop a ball into a target box. Students define a Ball
class that extends ActiveObject, a class provided in
our ObjectDraw library to handle the management of
threads. This lab also serves as an exercise in thinking
carefully about parameters.

Lab 4. The following week’s lab is to program the
Frogger game. Images of cars move across the screen
to form four lanes of traffic. The user controls a frog’s
attempts to hop across the road without being run over
by clicking on the mouse button in the direction the frog
is to hop. Each car is controlled by a separate thread,
encapsulated as an ActiveObject.

Later labs, emphasizing topics such as arrays, Strings,
files, and recursion, were easy to design and implement
with our ObjectDraw library, including a final program
in which students implemented a simplified version of
PacMan or Space Invaders.

6 Related Work

Many have discussed the tension between the desire to
limit the complexity faced by beginning programmers
and the desire to present the object-oriented approach
from the very start of an introductory course.

Reges [6] proposes providing students with applications
which include the GUI components, but omit one or
more classes, which are then assigned to students to
implement. This approach has the advantage of making
it easy for students to use GUI components without the
overhead of having to learn AWT or Swing.

Buck and Stucki [3] propose a technique similar to
Reges. They provide code to handle user interface meth-
ods and then ask the student to add code to a class to
complete the implementation. They limit the degree to
which students address design issues even further than
Reges by specifying the methods the student should im-
plement and their parametrizations.

We fear that these approaches will leave students feel-
ing that they have no understanding of how to write
complete programs. They are essentially stuck with be-
ing dependent on faculty-written frameworks for which
they write only relatively insignificant pieces. In some
sense, of course, our students are equally dependent on
our library to construct complete programs. The differ-
ence is that our library provides general purpose primi-
tives similar to the system library rather than providing
support that is limited to a particular programming as-
signment. As a result, students perceive the experience
of using our library as similar to the experience of writ-
ing programs using only system supplied libraries and
enjoy the associated satisfaction.

Another technique that has been used to eliminate com-
plexity from the first encounters students have with pro-
gramming is the use of “micro-worlds”. For example,
the object-oriented version of Karel [2] provides an en-
vironment in which students can write short programs
to manipulate robot objects through methods. In our
view, the graphics library we provide has many of the
advantages of a micro-world. It employs a limited and
simple vocabulary of commands. It enables beginning
programmers to get immediate feedback regarding the
behavior of their programs. There is little real differ-
ence between telling Karel to move and telling one of
our graphical objects to move. The graphics library,
however, has the additional advantage that it remains a
useful tool throughout the course for the development
of a wide range of programs.

Our graphics library is particularly similar to the Wid-
get package developed by Roberts [7, 8]. Both systems
are based on a collection class (the “canvas” or “col-
lage”) to which a student can add instances of state-

ful graphical objects. Roberts’s package is more gen-
eral than ours, providing a CompoundWidget class de-
signed to let the programmer extend the set of sup-
ported graphical shapes. On the other hand, Roberts
does not provide mechanisms to enable beginners to
construct event-driven programs. His package includes
a “waitForClick” method apparently designed to sup-
port the “turn taking” approach to user interaction ad-
vocated by Wolz [12].

Conner et al [4] advocate an object-first approach that
depends on a graphics library, NGP, that also integrates
event-driven programming. Their graphics library also
includes a collection of GUI components and library-
specific ways of laying out components. Both graphics
and GUI components react to events using an event-
driven model similar to that of Java 1.0. Behavior is
associated with objects by defining a subclass of the
component that overrides the default behavior. In par-
ticular, this approach to event-driven programming un-
necessarily mixes GUI appearance and behavior with
the application behavior. Our own library is both sim-
pler and more restricted in scope, and makes it easier
to migrate to the Java 1.1 event model.

Readers familiar with the work of Lynn Andrea
Stein [10] and her Rethinking CS101 project at MIT
will recognize the impact of her thinking on this project.
Our approach is simultaneously more radical and more
conservative than Stein’s. When we looked at early ver-
sions of the text she is developing for her course, we
were surprised to find that the sequence of topics in the
beginning of the course was quite conservative. Chap-
ters 1 through 6 cover the traditional topics of built-
in data types, expressions, and statements (including
conditionals and loops). Chapter 7 introduces classes,
objects, and methods. Chapter 9 introduces threads
for animate objects, while event-driven programming is
not covered until chapters 15 and 16. Instead, we take a
more radical approach and introduce event-driven pro-
gramming in the first week of the term, with discussions
of concurrency by week 4. On the other hand, we are
more conservative in that we do not introduce some of
the more sophisticated applications such as networking,
client-server interaction, etc., that Stein includes in her
course.

7 Conclusion

The use of our ObjectDraw library has enabled
our course to focus on the key concepts of object-
oriented programming without overwhelming students
with the complexity of using raw Java in the first few
weeks. While the graphics classes were used unchanged
throughout the term, students were weaned from the
simplified event-driven model presented early in the
course, to the more complex world of listeners with

more varied events and GUI components. By the sec-
ond course, the library is not used by the students at
all.

Our library allowed us to focus on objects and meth-
ods from day one, and provided students with the tools
to apply these techniques without excessive overhead.
While we are continuing to refine the library, we feel
that it is an important tool for introducing novices to
object-oriented programming.

References

[1] Bailey, D. A., and Bailey, D. W. Java Elements.
McGraw Hill, 2000.

[2] Bergin, J., Stehlik, M., Roberts, J., and Pattis,
R. Karel++: A Gentle Introduction to the Art
of Object-Oriented Programming. John Wiley and
Sons, 1996.

[3] Buck, D., and Stucki, D. J. Design early consid-
ered harmful: Graduated exposure to complexity
and structure based on levels of cognitive develop-
ment. In Proceedings ACM SIGCSE Symposium
2000 (2000), pp. 75–79.

[4] Conner D. B, Niguidula D, A. v. D. Object-
oriented programming: Getting it right at the
start. In OOPSLA Educators’ Symposium, Port-
land, OR (1994).

[5] Horstmann, C. Computing Concepts with Java.
John Wiley and Sons, 1998.

[6] Reges, S. Conservatively radical java. In Proc.
ACM SIGCSE Symposium (2000), pp. 85–89.

[7] Roberts, E. The Widget package for
Java. Tech. rep., Stanford University, 2000.
http://cse.stanford.edu/java/widget/index.html.

[8] Roberts, E., and Picard, A. Designing a Java
graphics library for CS 1. In Proceedings of the
3rd annual ITiCSE (1998), pp. 213–218.

[9] Slack, J. M. Programming and Problem Solving
with Java. Brooks/Cole, Thomson Learning, 2000.

[10] Stein, L. A. What we’ve swept under the rug: Rad-
ically rethinking CS1. Computer Science Education
8, 2 (1998), 118–129.

[11] Stein, L. A. Interactive Programming in Java. Mor-
gan Kaufmann Publishers, 2001.

[12] Wolz, U., Weisgarber, S., Domen, D., and
McAuliffe, M. Teaching introductory programming
in the multi-media world. In Proceedings ITiCSE
(1996), pp. 57–59.

