
Why Structural Recursion Should Be Taught Before Arrays
in CS 1∗

Kim B. Bruce
†

, Andrea Danyluk, and Thomas Murtagh
Department of Computer Science

Williams College
Williamstown, MA 01267

{kim,andrea,tom}@cs.williams.edu

ABSTRACT
The approach to teaching recursion in introductory pro-
gramming courses has changed little during the transition
from procedural to object-oriented languages. It is still com-
mon to present recursion late in the course and to focus on
traditional, procedural examples such as calculating facto-
rials or solving the Towers of Hanoi puzzle. In this paper,
we propose that the shift to object-oriented programming
techniques calls for a significant shift in our approach to
teaching recursion. First, we argue that in the context of
object-oriented programming students should be introduced
to examples of simple recursive structures such as linked lists
and methods that process them, before being introduced to
traditional procedural examples. Second, we believe that
this material should be presented before students are in-
troduced to structures such as arrays. In our experience,
the early presentation of recursive structures provides the
opportunity to reinforce the fundamentals of defining and
using classes and better prepares students to appreciate the
reasons to use classes to encapsulate access to other data
structures when they are presented.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education

General Terms
Algorithms, Design

Keywords
CS1, recursion

∗Research partially supported by NSF CCLI grant DUE-
0088895.
†currently on leave at UC Santa Cruz.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE ’05 Feb 23–27, 2005, St. Louis, Missouri, USA
Copyright 2005 ACM 1-58113-997-7/11/0002 ...$5.00.

1. INTRODUCTION
In the fall of 1999, we implemented a major update of the

Williams College CS 1 course. The course is now taught
using Java. With the support of the specially designed
objectdraw library, this course takes an objects-first ap-
proach, uses truly object-oriented graphics, incorporates
event-driven programming techniques from the beginning,
and includes concurrency quite early in the course. As ar-
gued in our earlier papers [2, 1], the combination of object-
oriented graphics, event-driven programming, and concur-
rency provides for a very interesting and pedagogically sound
introduction to programming.

After the first few offerings of this course, we began to see
a troubling pattern: in the second half of the course students
were drifting away from thinking about object-oriented de-
sign issues. When we introduced arrays, students resisted
encapsulating them in classes, instead simply making the ar-
rays available globally as instance variables or passing them
around as parameters.

For example, our first array lab involved presenting the
Simon game, in which the computer generates longer and
longer sequences of notes that the player must repeat. We
emphasized to students that there should be a Song class in
which the array of notes should be an instance variable, and
which should support methods like play, endOfSong, etc.
However, many students resisted creating this separate class
to encapsulate the array. These students instead declared
the array as an instance variable of the class that handled
user interactions, and manipulated the array directly within
the methods of that class.

Similar things happened with programs involving multi-
dimensional arrays, strings, and files. We were concerned
that we were teaching the first half of the course in an object-
oriented style and the second half in a more procedural style.

Eventually, we devised a reordering of course topics that
allows us to more firmly ingrain the object-oriented style of
programming in ways that carry over into our introduction
of arrays, etc. The key was to move the teaching of recursion
from after arrays and strings to before these topics. More-
over, we changed from a focus on method-based recursion
over the integers to a concentration on structural recursion.
In the rest of this paper we discuss how we approach recur-
sion and the associated benefits to having students design
data structures in a more object-oriented style. While our
own work took place in the context of using the objectdraw

library, we believe that the same ideas can be used to im-
prove any objects-early CS 1 course.

2. THE FIRST HALF OF THE COURSE
We begin our introductory course with the use of event-

driven programming and truly object-oriented graphics. This
use of graphics provides concrete examples of flexible and
useful objects from predefined classes. The event-driven pro-
gramming style allows students to create quite interesting
programs using only very basic language constructs. The
resulting methods tend to be relatively simple, while the
implicit flow of control (e.g., from executing a method han-
dling a mouse press to executing a method handling mouse
drags to executing one handling a mouse release) allows stu-
dents to focus on the manipulation of the objects without
worrying about control structures.

After the introduction of conditional statements, students
begin the design of multi-class programs. For example, stu-
dents write programs that allows the user to create and drag
around graphical objects generated by a class that they de-
sign. Objects on the screen can interact to produce inter-
esting behavior. One such program we have assigned places
pictures of two magnets in a window. When one magnet is
dragged too close to the other, they either attract or repel,
depending on which poles are close enough to interact.

We next introduce while loops. Threads (as extensions of
our library’s ActiveObject class) are introduced to provide
a context in which simple while loops produce interesting
behavior. In particular, while loops and threads can be
used to produce animations as part of a program. As a first
example, students write a program in which a click above
a line results in the creation of a ball that then falls slowly
down the screen. Points are scored if the ball falls entirely
within a basket that is placed at a random position at the
bottom of the window.

Later, our students write a Frogger game where mouse
clicks are used to guide a frog across a four-line highway
that includes cars moving in all of the lanes. In this example,
there is a class for the frog, a class extending ActiveObject

representing lanes of the highway, and another class extend-
ing ActiveObject representing the vehicles on the highway.
From these examples, students get a great deal of experience
building programs that involve several objects from different
classes.

We then introduce Java interfaces. We emphasize that
if a variable’s type is an interface, then the variable can
hold objects generated by different classes that implement
the interface. This flows into a relatively quick introduction
to GUI interfaces using the Swing library.

At this point, we are 5 to 6 weeks into our 12 week
semester. Topics to be covered in the second half of the
term include one-dimensional and multi-dimensional arrays,
strings, exceptions, files, recursion, and simple sorting and
searching. Many of these topics are taught in ways fairly
similar to those used in procedural languages, though of
course the arrays generally hold objects from classes rather
than just numbers.

Students learn best when fundamental ideas are reinforced
by repetition and are used in different contexts. Because
the object-oriented ideas no longer play as important a role
in this portion of the course, student understanding of the
rationale for object-oriented design seemed to slip, even in
situations where the design of classes would provide sub-
stantial benefits. In the next section, we discuss how the
introduction of recursion before arrays helped us keep the
focus on the object-oriented approach.

3. TEACHING STRUCTURAL RECURSION
BEFORE ARRAYS

Both arrays and recursive structures can be used to hold
collections of objects. In typical introductory texts using
procedural or object-oriented languages, arrays are intro-
duced first, and only later are recursively defined structures
like recursive lists introduced.1 In fact many texts reserve
their presentation of recursion for one of the final chapters,
encouraging instructors to put this material off for discus-
sion in a CS 2 course. We argue here that recursively defined
structures are more object-oriented in flavor, and their rela-
tively early introduction can help reinforce important ideas
like dynamic method dispatch and the use of interfaces.

In addition, using structural recursion and presenting it
before arrays makes it much easier to maintain student in-
terest in the topic. Instructors who teach arrays before re-
cursion have a difficult time convincing students of the value
of using recursion. Most of the examples traditionally pre-
sented using recursion can easily be handled with loops or
arrays or involve problems that appear to have little practi-
cal value to the students. On the other hand, at the point we
now introduce recursion, students have not yet seen arrays
or any other Java constructs that will allow them to repre-
sent collections of objects. Learning about recursive struc-
tures greatly expands the range of programming problems
our students can solve by allowing them to write programs
that manipulate such collections.

In this section we present a very simple example to illus-
trate our ideas. While we will use the objectdraw library to
create a recursive graphic image, the underlying data struc-
ture is simply a specialized recursive list. Instructors can
select other examples that fit in the context of their courses,
yet illustrate the same fundamental ideas.

Figure 1: Picture corresponding to an object of a
RingedTarget class.

For our example we will design a class that represents
a target like that shown in Figure 1. A target consists of
a small filled oval (the bullseye) and a series of concentric
rings. A recursive description of a target is as follows. If
the radius of the target is 15 pixels or smaller, the target
simply consists of a bullseye. Otherwise the target consists
of a framed oval with the given radius and then a smaller

1Introductory courses using functional languages, on the
other hand, typically cover built-in recursively defined lists
early.

target with the same center, but a radius 8 units smaller
than before.

We can define classes representing targets that will have
exactly this structure. The base class, BullsEye, will create
the bullseye only, while the recursive class, RingedTarget,
will represent targets with one or more circles around the
bullseye.

We wish to define targets that support a move method and
a contains method. Thus we define an interface with those
methods:

public interface TargetInterface {

// move the target by dx in x direction and

// dy in y direction

void move(double dx, double dy);

// return whether the target contains pt

boolean contains(Location pt);

}

Both classes to be defined will implement this interface. We
use Java and emphasize interfaces over inheritance, but in
courses that use other languages or emphasize inheritance
over interfaces, a fully abstract class could be used instead.

Defining a BullsEye class implementing this interface is
easy:

public class BullsEye implements TargetInterface {

private FilledOval centerCircle; // bullseye

// bullseye centered at pt with radius

public BullsEye(Location pt,

double radius,

DrawingCanvas canvas) {

centerCircle = new FilledOval(

pt.getX() - radius,

pt.getY() - radius, 2 * radius,

2 * radius, canvas);

}

// move the target by dx in x direction and

// dy in y direction

public void move(double dx, double dy) {

centerCircle.move(dx,dy);

}

// return whether the target contains pt

public boolean contains(Location pt) {

return centerCircle.contains(pt);

}

}

The class above uses the objectdraw graphics library, but
the intent should be clear enough. The constructor draws
a filled oval, while the move method moves the oval and the
contains method determines whether the oval contains the
point. As usual the base case of a recursive structure is
very straightforward, and neither the constructor nor either
method uses recursion.

The recursive class representing targets with one or more
rings is more interesting.

public class RingedTarget

implements TargetInterface {

// outer ring of target

private FramedOval outer;

// rest of target

private TargetInterface rest;

// Create target centered at pt with radius

public RingedTarget(Location pt, double radius,

DrawingCanvas canvas) {

// Create and center outer ring

outer = new FramedOval(pt.getX() - radius,

pt.getY() - radius, 2 * radius,

2 * radius, canvas);

radius = radius - 8;

if (radius > 15) {

rest = new RingedTarget(pt, radius,

canvas);

} else {

rest = new BullsEye(pt, radius, canvas);

}

}

// move the target by dx in x direction

// and dy in y direction

public void move(double dx, double dy) {

outer.move(dx,dy);

rest.move(dx,dy);

}

// return whether the target contains pt

public boolean contains(Location pt) {

return outer.contains(pt);

}

}

The constructor creates an outer ring and then, depending
on the size, sets rest to be either a new smaller RingedTarget
inside the outer ring or a new BullsEye. The move method
moves the outer ring and then moves the rest. The contains
method, on the other hand, is not recursive and simply de-
termines if the outer ring contains the location passed in.

While this example introduces the general use of recur-
sion, it also reinforces other important concepts. Interfaces
are being used in an essential way, as the value of rest can
either be a BullsEye object or a RingedTarget object.

Even more important is how this code illustrates the im-
portance of dynamic method dispatch. In the move method,
the message send of move to rest is an excellent example.
If the value of rest is a BullsEye object, then the move

method of that class moves the centerCircle. If the value
of rest is a RingedTarget object, then the move method
will move its outer ring and then send the move message to
its rest instance variable (which is of course different from
the rest instance variable of the original receiver).

As noted earlier, the example above is a thinly veiled ex-
ample of a recursively defined list. We provide students
with several other examples of recursive structures that all
fit the same pattern (e.g., lists of URLs, scribbles as lists of
line segments) as well as one or more examples of somewhat
different structures (e.g., fractal drawings of snowflakes or
broccoli), each time keeping a focus on the general recursive
structure.

4. WHY STRUCTURAL RECURSION?
Most textbooks and instructors introduce recursion via

methods in which the recursion is based on integers. For
example, one can define recursive algorithms for exponen-
tiation, binary search, or quicksort, where the recursion is
based on the number of elements in the slice of the array
left to be processed.

While this is fine as an approach to recursion (and ex-
amples like binary search and quicksort can be important
examples of the use of recursion), we argue that this sort of
example is less intuitive to students and does not highlight
the important object-oriented features that are brought out
by the use of structural recursion. Let’s address each of
these individually.

Students find it hard to conceptualize recursive functions
and procedures. Recursion works by starting one compu-
tation, and then interrupting that computation to perform
one or more computations using the exact same set of in-
structions and instances of the same variables, eventually
returning to complete the original computation. Instructors
know that different copies of parameters and local variables
are kept with the stack of activation records corresponding
to the various recursive calls. The notion of an activation
record, however, is new to the students and difficult for them
to grasp because they are allocated implicitly and never ex-
plicitly manipulated by the program. While instructors may
try to make the underlying execution model more concrete
using exercises in which one student begins executing the
original computation and calls on others to perform the re-
cursive calls, the notion of procedural recursion resulting in
new invocations of procedures is difficult for many students
to grasp.

On the other hand, structural recursion is quite concrete.
In a course like ours that stresses object-oriented program-
ming, students will have already become familiar with the
idea that it is possible to create multiple objects of a single
class. Unlike activation records, the creation of these objects
is done explicitly in their code. Moreover, they understand
that each of these objects has its own copies of the instance
variables declared by the class. This knowledge is developed
through their programming experience before the subject of
recursion is introduced. For example, in the assignment de-
scribed above in which our students implement a program
that lets them drag two magnets around the screen, they
know that each magnet must have its own copies of the
instance variables that keep track of its position. This is
reinforced concretely by the fact that when they invoke the
move method of one magnet the other does not move.

This knowledge can be easily exploited when explaining
recursion. When they see that the move message is sent to
a particular object from class RingedTarget, one can draw
a picture to illustrate the instance variables of the original
target and the objects to which they refer. When the recur-
sive call is made to rest, the slightly smaller target, another
picture can be drawn illustrating the separate instance vari-
ables of that object. This can continue all the way down
to the base case. These objects are familiar to the students
and more concrete than are activations of functions.

We remarked earlier on the fact that using data structures
defined by structural recursion highlights and reinforces im-
portant concepts in object-oriented programming such as
the use of interfaces (subtyping) and dynamic method dis-
patch. Unfortunately, methods defined based on recursion

on the integers illustrate none of these principles. No inter-
faces are relevant, and the decision as to which code is to be
executed is based on a conditional statement rather than on
dynamic method dispatch. A binary search or quicksort in
an object-oriented language looks extremely similar to one
in a procedural language. In fact, many texts illustrate these
with static methods, emphasizing their independence from
object-oriented concepts.

Another advantage of using structural recursion is that
students see these data structures representing collections
of objects where the details are hidden inside classes. When
we later teach students arrays as an alternative way to hold
collections, they are much more likely to see the reasons for
hiding the arrays as instance variables in classes that export
the more natural methods associated with the data struc-
ture. We often show one data structure implemented by
structural recursion and another version using arrays. The
public methods with their signatures in each are the same,
with the differences in implementation hidden inside of the
objects. At that point we can discuss how both produce the
same results, but with slightly different performance char-
acteristics.

5. EVALUATION
There have been noticeable differences in student pro-

grams written in the second half of our course after we
moved up the presentation of recursion and emphasized struc-
tural recursion over recursion on integers. For example, very
few students now resist encapsulating arrays inside classes.
Because of their experience with recursive data structures,
they now see this as the normal way of handling data struc-
tures.

Recall our earlier example of the Simon game, and a class
Song representing the sequence of notes generated so far.
After the introduction to structural recursion, students are
much more likely to create a class with an array as an in-
stance variable and where the methods are not tightly asso-
ciated with array operations. Instead they include methods
like addNote(), atEnd(), makeNewSong(), play(), etc. As a
result of this superior organization, they find this program
easier to write and debug.

In checking to find quantifiable evidence of the impact of
this change in student perceptions of our course, we exam-
ined student course evaluations, in particular the summary
scores for course difficulty. Of course there are many vari-
ables that can contribute to student perceptions of course
difficulty. To adjust for some of these, we compared two
offerings of the course that were taught by the same lead in-
structor in a similar semester. (We see somewhat different
student populations between the fall and spring semesters.)

In the spring of 2000, a semester in which arrays were
taught well before recursion, students reported an average
level of difficulty for the course of 4.0 out of 5, where 1 is the
lowest difficulty and 5 is the highest. In the spring of 2002,
where recursion was taught before arrays, students reported
an average level of difficulty of 3.0 out of 5. The first score
was in the highest quintile range for courses in the college,
while the latter falls into the second lowest quintile range.
We note that most of the lab assignments were essentially
the same between these two course offerings.

While there are always minor differences between offer-
ings of the course and indeed the population of students,
the changes in student reported level of difficulty suggests

that students perceived the course to be easier when recur-
sion was moved earlier. The earlier version of the course
introduced integer-based recursion before structural recur-
sion, though the associated lab assignment, both before and
after the earlier introduction of recursion, involved design-
ing a recursive class representing a fractal-like picture. Later
versions of the course have also included a second recursion
lab involving writing a program to handle lists of scribbles.

6. RELATED WORK
There have been many papers on teaching recursion (for

example, Wu et al [8]), but only a few have focused on struc-
tural recursion. Structural recursion is very common in func-
tional programming languages. An example is the Felleisen
et al text [4], which uses Scheme and emphasizes strongly
the design of programs based on the structure of the data.
Another example is the paper by Henderson and Romero
[6], which discusses teaching structural induction with ML.

The text [5] by Felleisen and Friedman breaks from the
more usual approaches to Java by developing immutable re-
cursive lists (representing pizzas) from the very beginning.
The style used in the book is very similar to that used in
functional languages. We do not advocate going as far as
those authors, as we believe it is important for students to
understand mutable variables and loops, but we do believe
that introducing recursion before arrays can have great ben-
efits.

Aside from that text, there has not been as much emphasis
on structural recursion early in procedural or object-oriented
languages. Our examination of several recent Java-based CS
1 books has shown that most text books either introduce
recursion as an optional section in one or more chapters or
relegate it to a very late chapter where it is unlikely to be
covered. Moreover, virtually all of the examples of recursion
presented in these texts involve procedural recursion on inte-
gers rather than the structural recursion we are advocating
here.

One of the few examples of papers discussing structural
recursion we were able to find is Nguyen and Wong’s paper
[7], which discusses using the visitor pattern on recursively
defined data structures, a more advanced topic than we have
discussed here.

7. CONCLUSIONS
In this paper, we have argued that the introduction of

structural recursion before the presentation of arrays helps
solidify students’ understanding of object-oriented concepts.
It also increases students’ understanding of why other data
structures, such as arrays, also need to be encapsulated in
classes that provide operations more naturally associated
with the objects represented by the classes. Moreover, we
argued that it is pedagogically easier to explain – and for
students to understand – structural recursion than recursion
based on integer values. Finally, presenting structural recur-
sion as described here reinforces the use and understanding
of interfaces and dynamic method dispatch.

We have been writing a text [3] based on our approach
to teaching programming in a CS 1 course. Instructors who
are interested in seeing more of the details of our approach
to presenting recursion will find them in the draft chapters
of the text that are available at:

http://eventfuljava.cs.williams.edu/

The text is now scheduled to be published by Prentice Hall
in early 2005.

8. REFERENCES
[1] K. B. Bruce, A. Danyluk, and T. Murtagh.

Event-driven programming can be simple enough for
CS 1. In Proceedings of the 2001 ACM ITiCSE
Conference, pages 1–4, 2001.

[2] K. B. Bruce, A. Danyluk, and T. Murtagh. A library to
support a graphics-based object-first approach to CS 1.
In Proceedings of the Thirty-Second ACM SIGCSE
Symposium, pages 6–10, 2001.

[3] K. B. Bruce, A. Danyluk, and T. Murtagh. Java: An
eventful approach. Prentice Hall, 2004.

[4] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs. MIT
Press, 2001.

[5] M. Felleisen and D. P. Friedman. A little Java, a few
patterns. MIT Press, 1997.

[6] P. B. Henderson and F. J. Romero. Teaching recursion
as a problem-solving tool using standard ML. In
Proceedings of The Twentieth SIGCSE Technical
Symposium on Computer Science Education, pages
27–31. ACM Press, 1989.

[7] D. Nguyen and S. B. Wong. Patterns for decoupling
data structures and algorithms. In Proceedings of the
Thirtieth SIGCSE Technical Symposium on Computer
Science Education, pages 87–91. ACM Press, 1999.

[8] C.-C. Wu, N. Dale, and L. J. Bethel. Conceptual
models and cognitive learning styles in teaching
recursion. In Proceedings of the Twenty-Ninth SIGCSE
Technical Symposium on Computer Science Education,
pages 292–296. ACM Press, 1998.

