
Event-driven Programming can be Simple Enough for CS 1

Kim B. Bruce

kim@cs.williams.edu

Andrea P. Danyluk

andrea@cs.williams.edu

Thomas P. Murtagh

tom@cs.williams.edu

Department of Computer Science

Williams College

Williamstown, MA 01267, USA

Abstract

We have recently designed a CS 1 course that integrates
event-driven programming from the very start. Our
experience teaching this course runs counter to the
prevailing sense that these techniques would add
complexity to the content of CS 1. Instead, we found that
they were simple to present and that they also simplified
the presentation of other material in the course. In this
paper, we explain the approach we used to introduce
event-driven methods and discuss the factors underlying
our success.

1 Introduction

We recently implemented a major update of our CS 1
course. The new version of the course is based on Java
(replacing Pascal), takes an objects-first approach, uses
labs incorporating graphics, and introduces event-driven
programming techniques including threads quite early in
the course.

Our decision to introduce our students to GUI
programming and to use event-driven techniques was
influenced by two arguments. The first, expressed by
Culwin and others [2, 8, 10], is that “our current students
need to be prepared for practicing their skills in the
context of software development in the twenty first
century.” [2] Teaching them techniques appropriate for
teletype terminals and card readers not only fails to
prepare them with the skills required to understand and
construct modern systems, but may burden them with
techniques that later need to be unlearned.

Others have cited student motivation as their incentive for
incorporating elements of GUI programming and event-
driven techniques in introductory courses [3,5]. Students
accustomed to working with programs with flexible,

graphical interfaces have little interest in laboratory
assignments based on line by line text input and output.

There are also those opposed to this approach. Several
authors have expressed concern that event-driven
techniques are either beyond the grasp of students in
introductory courses or would require so much additional
class time that other, more fundamental topics would be
displaced. Wolz and Koffman [4] have developed their
“simpleIO” library to enable students to construct
applications with the feel of a GUI but “without the
complexity of non-sequential models.” Reges advocates a
“conservatively radical” approach in which the instructor
provides students with implementations of the GUI
components of an application and then asks the students
to construct classes that interact with the instructor’s [6].

Even some that advocate the introduction of event-driven
techniques, do so with the assumption that these
techniques are advanced. Although Stein seems to be
quite radical in her call to introduce students to a
computing model based on interacting communities of
processes, event-driven techniques do not appear until
relatively late in her course. In one draft of her text,
event-driven programming is not covered until chapter 15.

It is reasonable to be concerned that event-driven
programming is too complicated to be presented in an
introductory course. We debated the issue extensively
before deciding to incorporate the event-driven approach
from the very beginning of our course. Since then,
experience offering the course has convinced us that
event-driven programming techniques can be presented to
students in a way that makes them intuitive. Furthermore,
we discovered that the use of an event-driven model
facilitates the clear presentation of several other, more
standard topics.

2 The Evidence

From the very first lab in our course, we have students
construct programs in a framework based on the Java
Applet class. Their first programs are defined as
extensions of a WindowController class from our library
that itself extends the Java Applet class. Our
WindowController creates a specialized Canvas in which
the students can place graphical objects, and it allows

them to handle mouse events by defining event-handling
methods with names like onMouseMove and
onMouseDown. These methods are very similar to the
mouse event-handling methods of the Java AWT. The
main difference is that they expect simpler parameters.
Most of our event-handling methods receive a single
parameter describing the coordinates where the mouse
event occurred, rather than a more complex "Event"
object. Our library also provides students with a set of
primitives to simplify the display of graphics. The
graphic features of our library are similar to those
described by Roberts and Picard [7].

In the first lab, students use this environment to construct
a simple drawing that changes in response to mouse
clicks. By the second lab, they have learned conditionals,
allowing them to construct a program that lets users drag
objects around the screen to implement something similar
to a shape-sorter. Next, they learn to write programs
involving several classes. For the third lab, they again
write a program that allows users to drag objects around
the screen, but this time there are several objects and they
interact like magnets. We then introduce loops and a
simple form of threads which they use in lab to create an
animated game. After about 6 weeks, we can move
beyond the simplified interface provided by our library
and explain standard Java event-driven programming
mechanisms. At this point, students also learn how to
program with buttons, choice items, scrollbars (sliders),
and text fields.

The ease with which our students learned to program
using event-driven techniques surprised even the most
optimistic of us. Students with no previous programming
experience found the model completely natural. Those
with previous experience had no problem adapting to the
approach. In both cases the change had consequences that
made other components of the process of learning to
program easier. Most strikingly, the event-driven style
nearly eliminated the tendency novice programmers have
to construct long, complex procedure bodies, and the
agony students suffer trying to debug such complex code.

At the end of each semester, students are asked to
complete a standardized evaluation form that includes two
questions relating to the difficulty of the course. The
questions ask the students to rate “the amount of work
expected” and “the level of difficulty.” Student responses
to both questions after the first offering of the new course
were 3.7 on a scale from 1 to 5. These responses fall at
the 75th percentile among the workload/difficulty
rankings for all courses in the college. More importantly,
these rankings were similar to those of a recent offering of
the previous course taught by the same instructor. For
that class, the ratings were both 3.6 out of 5.

In addition to using event-driven techniques in our CS 1
course, we have introduced this programming model in an
introductory course we offer for non-majors. Many of the
students enrolled in our non-majors course have technical

skills considerably weaker than those who take CS 1.
Nevertheless, the use of an event-driven model has also
been quite successful in this non-majors course. Since
there was no previous version of the non-majors course,
we can not offer any quantitative comparison of student
perceptions of difficulty.

Between our CS 1 course and our non-majors course, we
have observed the reactions of over 200 students to an
introduction to programming based on an event-driven
model. This experience has strongly confirmed our hope
that this model could provide a simpler rather than a more
complex approach to programming for the novice.

3 Some Explanations

Our experience has been so contrary to the expectations
of others that it is appropriate to explore this contrast in
more detail. We believe that two factors are responsible:

(1) We and others have tended to overestimate the
complexity of the event-driven model;

(2) The actual support current systems provide for event-
driven programming is more complex than necessary.

We suspect that the reason many overestimate the
difficulty of event handling is that they themselves did not
encounter the subject until they were already experienced
programmers. It is only natural to assume that something
one learns late in one's training must be advanced.

In reality, the absence of event-driven techniques in the
training of current instructors was not related to their
complexity. It resulted from the fact that situations where
event-driven techniques are appropriate, such as programs
based on interactive GUIs, were not common when most
current instructors learned to program. In today’s world
full of interactive programs, it is appropriate to expose
students to the programming techniques that best suit the
construction of such programs.

We must remember that event-driven techniques were not
devised to make programming harder. They were
developed because they can actually simplify both the
details and the underlying conceptual model required to
construct interactive programs.

To make this concrete, imagine a simple, interactive
program that is supposed to merely draw a dot at the
current mouse position each time the mouse is clicked. In
event-driven form using our library, the solution to this
problem involves a single, short method that is invoked
by the system each time the mouse is clicked. The body
of the method contains just the code to draw the dot using
the method's parameters to determine the mouse position.
The complete Java code required for this program in our
environment is shown below:

class DrawDots extends WindowController {
public void onMouseClick(Coords mouseLocation) {

new FilledOval(mouseLocation, 1, 1, canvas);
}

}

A more traditional solution to this problem would require
a loop that would be executed once per click. Its body
would consist of nested loops that repeatedly do nothing
until the mouse is depressed and released followed by
code to draw the dot. The code for this approach,
appropriate for the environment we used in the previous
version of our CS 1 course, Pascal and Quickdraw, is
shown below. The inner loops could be replaced by a call
to an “awaitClick” procedure with an appropriate library.

program drawdots;

var mouseLocation: point;
begin
 while true do
 begin

repeat until button;
repeat until not button;
GetMouse(mouseLocation);
PaintOval(mouseLocation.x, mouseLocation.y, 1, 1)

 end;
end.

If you run a program like this and ask students with no
programming experience what the computer is doing
before you press the mouse, they will give a fairly
obvious answer: “Nothing.” The event-driven solution
mirrors the students' natural perception of what the
computer does while it is waiting. Doing nothing requires
no code. In the traditional version, however, one must
write explicit code to tell the machine to do nothing.

In past semesters, situations like these have been
stumbling blocks for our students. We have had to
explicitly teach them to think like computers and take the
view that nothing must be something. With hindsight, we
feel it is clearly more appropriate to adopt programming
tools that reflect natural human models of the tasks
undertaken than to adjust the thinking patterns of our
students to fit the limitations of the programming
techniques we present.

In many ways, the argument over whether event-driven
techniques are inherently complex is similar to the
argument whether recursive or iterative programming
techniques are simpler. Typically, those who are taught
iteration before recursion find recursion mystifying at
first. Once recursion is understood, however, it becomes
obvious that there are problems for which the recursive
solution is far more clear than any iterative solution.

There is an additional, more substantial reason to doubt
the feasibility of presenting event-driven techniques in an
introductory course. Mechanisms for event-driven
programming in contemporary programming systems are
not designed for beginners. As a reminder, here is what is
necessary to do event-driven programming in standard
Java:

-Define a class of objects that can act as listeners,

-Declare that the listener class implements the
appropriate listener interface,

-Define the method(s) that the listener interface requires,

-Create one or more instances of the listener, and

-Pass an instance of the listener class as a parameter to
the appropriate component's “addListener” method.

With all of this required, it is no surprise that instructors
think that event-driven programming is too difficult for
novices. If mechanisms for event-driven programming
were designed for beginners, simplicity would be a design
goal. Instead, the design goal is to provide the flexibility
required by expert programmers.

When programming with our library, a student is
provided with facilities that simplify the details of
handling mouse events. Student programs are extensions
of a class that catches mouse events and invokes simple
methods students can override to handle these events. In
the first weeks of our course, in fact, our students believe
the only purpose for method declarations is to associate
event-handling code with particular events. It seems
perfectly natural to them that if you define a method
named “onMouseClick” then the instructions inside its
body will be carried out when the mouse is clicked. Most
of these methods take a single parameter describing the
point where the mouse event occurred. This parameter
gives students easy access to just enough information
about the events to construct interesting programs.

This “training wheels” version of event handling is
necessary for the first few weeks of the course. Before
long, however, we are able to expose students to most of
the features of the underlying Java event-handling model.

4 Advantages of “Events-first”

Those who argue against including event-driven
techniques in the first course frequently express concern
that this new topic will displace other, more important
topics. We had a very different experience. Introducing
the event-driven model very early actually made it easier
to teach other critical topics.

One of our goals was to teach students basics of object-
oriented design. One can introduce Java programming by
having students construct simple applications. In this
case, students begin by placing all their code in a method
named main. As the complexity of the code increases,
students are taught to procedurally decompose their code
into small, logically structured private methods. The
problem with this approach is that in following it, one is
teaching a procedural rather than an object-oriented
approach. Students are led to think of methods as a
mechanism to decompose larger tasks rather than as the
means to describe the possible behaviors of an object.

In our course, our students never imagined the idea of a
large main program. From the start, their programs were
actually class definitions that consisted of lists of short

method definitions. At first, they thought of each method
definition as an event handler. They were not conscious
of the possibility of generalizing the use of the class
construct to define new objects. They did, however, view
methods as a means of describing how a single object
(their program) should respond to outside stimuli. This
view remained clear to them throughout the course. After
years of pleading with students writing in Pascal to
decompose their code into shorter procedures, it was
shocking to find that this was simply no longer an issue.

In a paper describing experience teaching a course based
on Stein’s work, Weber-Wulff discusses the frustration of
attempting to teach good design habits to students who
enter a CS 1 course with what they view as considerable
experience [9]. In our course, such students were thrilled
by the power the event-handling model gave them to
create interactive programs. They never even noticed that
they were simultaneously being led to use good
programming style. It was as if we offered them the
tightest straight jacket we could find and they responded
by happily asking us to help them put it on.

The definition of event-handling methods also has the
advantage that the introduction of formal parameters is
separated from the introduction of actual parameters.
Students use formal parameters when defining event-
handling methods, but don’t have to worry about where
the actual values come from. They accept the idea that the
system somehow provides this information to their
methods. At the same time, they are actively using actual
parameters when invoking the constructors and methods
of our graphics library. By the time we introduced the
definition of new classes of objects, students are
comfortable with both notions and are well prepared to
deal with the idea that a formal parameter can refer to an
actual parameter from another part of their program.

In conjunction with the use of objects through our
graphics library, the event-handling style of programming
provided an excellent way to prepare students for the
introduction of classes. By the time we began asking
students to define their own classes, they had already used
all of the required language mechanisms. Instead of
explaining parameter passing or class syntax, we could
focus on the role of objects.

5 Comparison with previous work

Others emphasizing the advantages of event-driven
programming include Conner et al [1] and Stein[8].
Conner et al advocate an object-first approach that also
takes advantage of event-driven programming, though
they suggest an event-driven model closer to that of Java
1.0. Behavior is associated with objects by defining a
subclass of the GUI component. It would seem to be a
large step to move from this model to the standard Java
event model. In particular, this approach to event-driven
programming unnecessarily mixes GUI appearance and
behavior with the application’s structure. Their event-
handling techniques also require familiarity with more of

Java’s object-oriented features, and therefore they
introduce these techniques slightly later than we do.

Stein[8] introduces event-driven programming late in her
course, and moreover seems more interested in explaining
the event queue and loop rather than introducing event-
driven programming as a primitive notion.

Our experience has convinced us that early use of event-
driven programming as a primitive notion provides an
effective introduction to programming for novices.

References

[1] Conner D B, Niguidula D, & van Damm A, Object-
Oriented Programming: Getting it Right at the Start,
Educator’s Symp at the 9th Annual Conf. on Object
Oriented Programming Languages, Systems, and
Applications, Oct. 1994, Portland, OR.

[2] Culwin F, Object Imperatives, Proc. of the 30th

SIGCSE Technical Symp. on Computer Science
Education, Mar. 1999, New Orleans, LA, pp. 31-36.

[3] Jimenez-Peris R, Khuri S & Patino-Martinez M,
Adding Breadth to CS1 and CS2 Courses through
Visual and Interactive Programming Projects, Proc. of
the 30th SIGCSE Tech. Symp. on Computer Science
Education, Mar. 1999, New Orleans, LA, pp. 252-256.

[4] Wolz U & Koffman E, simpleIO: A Java Package for
Novice Interactive and Graphics Programming, Proc.
of the 4th Annual SIGCSE/SIGCUE Conf. on
Innovation and Technology in Computer Science
Education, June 1999, Cracow, Poland, pp. 139-142.

[5] Mutchler D & Laxer C, Using Multimedia and GUI
Programming in CS 1, Proc. of the SIGCSE/SIGCUE
Conf. on Integrating Technology in Computer Science
Education, 1996, Barcelona, Spain, pp. 63-65.

[6] Reges S, Conservatively Radical Java in CS1, Proc. of
the 31st SIGCSE Technical Symp. on Computer
Science Education, Mar. 2000, Austin, TX, pp. 85-89.

[7] Roberts E & Picard, Designing a Java Graphics
Library for CS1, Proc. of the 3rd Annual
SIGCSE/SIGCUE Conf. on Integrating Technology
into Computer Science Education, August 1998,
Dublin, Ireland, pp. 213-218.

 [8]Stein L A, Beyond Objects, Educator’s Symp at the
12th Annual Conf. on Object Oriented Programming
Languages, Systems, and Applications, Atlanta, GA,
October, 1997.

[9] Weber-Wulff D, Combating the Code Warrior: A
Different Sort of Programming Instruction, Proc. of
the 5th Annual SIGCSE/SIGCUE Conf. on Innovation
and Technology in Computer Science Education, July,
2000, Helsinki, Finland, pp. 85-88.

[10]Woodworth P & Dann W, Integrating Console and
Event-Driven Models in CS1, Proc. of the 30th

SIGCSE Technical Symp. on Computer Science
Education, Mar. 1999, New Orleans, LA, pp. 132-135.

