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Abstract

Learning the relational structure of a domain is a funda-
mental problem in statistical relational learning. The
deep transfer algorithm of Davis and Domingos at-
tempts to improve structure learning in Markov logic
networks by harnessing the power of transfer learn-
ing, using the second-order structural regularities of a
source domain to bias the structure search process in
a target domain. We propose that the clique-scoring
process which discovers these second-order regularities
constitutes a novel standalone method for learning the
structure of Markov logic networks, and that this fact,
rather than the transfer of structural knowledge across
domains, accounts for much of the performance bene-
fit observed via the deep transfer process. This claim is
supported by experiments in which we find that clique
scoring within a single domain often produces results
equaling or surpassing the performance of deep transfer
incorporating external knowledge, and also by explicit
algorithmic similarities between deep transfer and other
structure learning techniques.

Introduction

The growing field of statistical relational learning aims
to develop methods for learning, inference, and dealing
with uncertainty in domains which are fundamentally re-
lational, in contrast to traditional statistical learningtech-
niques which are often limited to propositional data. Markov
logic networks (MLNs) are a representation which gen-
eralizes first-order logic and probabilistic graphical mod-
els, using weighted formulas of first-order logic to repre-
sent knowledge about a relational domain (Richardson and
Domingos 2006). Learning an MLN representation for a
domain can be reduced to two problems:structure learning,
i.e. discovering a set of logical formulas, andweight learn-
ing, i.e. choosing a weight for each formula. Learning the
structure of an MLN for a relational domain is an impor-
tant problem for which several algorithms have been pro-
posed (for example, Kok and Domingos 2005; Mihalkova
and Mooney 2007; Biba, Ferilli, and Esposito 2008; Kok
and Domingos 2009).
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One approach to improving structure learning perfor-
mance is to applytransfer learning, which uses knowl-
edge gained from learning a source task to aid learning in
a related target task (Torrey and Shavlik 2009). The deep
transfer algorithm (DTM) proposed by Davis and Domin-
gos transfers knowledge between relational domains, which
may be composed of entirely different predicates, by ana-
lyzing structural tendencies of formulas in the source do-
main and representing them as domain-independent knowl-
edge in the form of second-order cliques. The cliques are
scored to identify the most salient structural tendencies,and
the highest-scoring cliques are instantiated as first-order for-
mulas in the target domain, where they provide a declara-
tive bias for structure learning. DTM has been shown to de-
liver improved learning performance for several pairings of
source and target domains, relative to pure structure learning
within the target domain.

In this paper, we argue that the performance increases
observed through DTM are not due primarily to its role in
transferring knowledge across domains, but instead that the
the algorithm is in fact performing a novel form of struc-
ture learning, which we will refer to as learning through
clique scoring with greedy selection (CSGL). As evidence,
we show that the DTM algorithm can be applied within a
single domain to obtain performance equalling or surpass-
ing the best cases of transfer, but without incorporating ex-
ternal knowledge. Furthermore, although DTM (and thus
CSGL) can make use of the MSL structure learning algo-
rithm (Kok and Domingos 2005) to refine learned theories,
we show that even when this step is omitted, structure learn-
ing through CSGL produces results equalling or exceeding
those of MSL.

We begin by briefly reviewing Markov logic and the deep
transfer algorithm. We then describe the role of clique scor-
ing in deep transfer and explain how, in conjunction with
first-order instantiation and greedy selection, it can be con-
strued as an algorithm for structure learning. We demon-
strate empirically that clique scoring can be used effectively
to learn in a target domain even without a distinct source do-
main, and we evaluate its performance as a standalone struc-
ture learning algorithm. Finally, we discuss the relationship
between CSGL and other structure learning algorithms, and
note in particular its strong parallels with a version of the
hypergraph lifting approach (LHL) presented in (Kok and



Domingos 2009).

Markov Logic and Deep Transfer
Terminology
In first-order logic, a constant refers to a particular object in
the domain. Variables stand in place of constants for the pur-
pose of quantification. A term is a constant or a variable. A
predicate represents a relation on objects in the domain and
is either true or false for any given list of objects; the arity
of a predicate is the number of arguments it takes. An atom
is a predicate applied to a list of terms, and a ground atom
is an atom in which all of the terms are constants. A clause
is a disjunction of atoms, any of which may be negated; a
formula may also include conjunction and implication. A
ground formula is a formula in which all of the atoms are
ground atoms. A world (or “possible world”) is an assign-
ment of truth values to all ground atoms in the domain.

Markov Logic Networks
Markov logic networks (MLNs), introduced by Richardson
and Domingos (2006), are a knowledge representation gen-
eralizing both first-order logic and probabilistic graphical
models. An MLN is a set of first-order formulas with as-
sociated weights. Given a finite set of constants, an MLN
may be represented as a Markov network (Pearl 1988) con-
sisting of a node for each ground atom in the domain and
an edge between any two nodes representing ground atoms
which appear together in the same ground formula. In this
representation, the cliques of the graph correspond roughly
to the ground formulas of the domain, and to each ground
formula j we assign a featuregj(x), which is defined to
be 1 if formula j is true in worldx and0 otherwise. We
also assign a weightwj equal to the weight of the corre-
sponding first-order formula in the MLN. Markov networks
model the joint probability distribution of a set of variables,
and so the Markov network created from a grounded MLN
can be interpreted as defining a probability distribution over
the set of all possible worldsX, given byP (X = x) =
1
Z

exp
(

∑

j wjgj(x)
)

, where the sum is taken over all fea-

tures in the graph andZ is a normalization constant. This
formula can be written equivalently as

P (X = x) =
1

Z
exp

(

∑

i∈F

wini(x)

)

,

whereF is the set of all first-order formulas in the MLN,
wi is the weight of theith formula, andni is the number of
true groundings of theith formula in possible worldx; note
that this rendering is in terms of the first-order MLN struc-
ture rather than the underlying Markov network structure.
By generalizing the propositional representation of Markov
networks to include first-order logic, MLNs are capable of
succinctly and intuitively representing complex models in-
volving uncertainty in relational domains.

Several algorithms have been proposed for structure
learning in MLNs. MSL, proposed by Kok and Domin-
gos (2005), uses an inductive logic programming-style beam
search in which atoms to be added or removed from a clause

are evaluated for their effect on the weighted pseudo-log-
likelihood (WPLL, defined by Kok and Domingos 2005)
of the data. As a local search strategy, MSL has the use-
ful property that it can be used both to learn structure from
scratch and also to refine existing theories. More recently,
several algorithms have been proposed which may outper-
form MSL in learning performance, required training time,
or both; see Mihalkova and Mooney (2007), Biba, Ferilli,
and Esposito (2008), and Kok and Domingos (2009).

Deep Transfer

The goal of deep transfer learning, as described by Davis
and Domingos (2009), is to identify domain-independent ab-
stract knowledge which can be used to bias the process of
structure learning in a destination domain. The process be-
gins with an MLN representing a source domain, abstracts
the MLN into second-order cliques which represent second-
order structure, identifies the cliques which correspond to
the most salient structural properties, and then uses thoseto
bias structure learning of an MLN in the target domain. The
initial source-domain MLN can be generated by any method,
but Davis and Domingos obtained their best results when us-
ing exhaustive search, which considers all possible clauses
under a maximum length and number of object variables.

Second-order cliques are simply sets of second-
order predicates which occur together in at least one
clause (e.g. the first-order clauses!Friends(x,y)
∨ Friends(y,x) and !Enemies(x,y) ∨
Enemies(y,x) each correspond to the same second-
order clique{r(x,y), r(y,x)}. To score a clique, the
algorithm examines each of its first-order instantiations.
Each instantiation is decomposed into all possible pairs of
subcliques, and each pair is assigned a score equal to the
K-L divergenceD(p‖q) =

∑

x p(x) log p(x)
q(x) , wherep is the

probability distribution of the entire clique (for any state
of the cliquex, p(x) gives the probability that the clique
will be in statex if we instantiate its terms with constants
from the domain) andq is the distribution it would have
if the two subcliques were independent. The score of a
first-order instantiation is the minimum score of all of its
decompositions, and the score of the second-order clique
is the average of its topn instantiations, which encourages
cliques having multiple useful instantiations.

Once the scoring process is complete, DTM selects the
top k second-order cliques which have at least one true
grounding in the target domain, and instantiates them by
creating all corresponding first-order clauses in the target
domain. These clauses include all possible ways of flipping
the signs of the atoms within the clique. In the “greedy trans-
fer with refinement” approach, which Davis and Domingos
found to be the most effective, DTM creates an MLN from
the resulting clauses by first greedily selecting clauses toim-
prove the WPLL until no additional clause does so, and then
applying MSL to refine the theory suggested by the greedy
procedure.



DTM for Structure Learning
Although DTM can extract cliques from any set of formu-
las in the source domain, Davis and Domingos found that
the best results came from considering not the results of
beam search or other structure learning techniques, but a
simple exhaustive listing of all possible clauses in the do-
main within a maximum length and number of terms. They
argue that since the clique scoring process already suggests
the most useful cliques for transfer, there is no additional
benefit in trying to learn a theory in the source domain which
would restrict the cliques that are considered for transfer. In
this paper we will generally use DTM to refer to the form of
the algorithm in which exhaustive search is used to generate
cliques for transfer.

An interesting effect of the use of exhaustive search is
that unlike many transfer methods, DTM performs a differ-
ent sort of learning in the source domain than in the target
domain. DTM’s only interaction with the data of the source
domain is through the clique-scoring process, while in the
destination domain it uses a greedy selection process, fol-
lowed optionally by beam search, to refine the clauses pro-
duced through transfer. This raises the question of whether
the demonstrated benefits of transfer can be attributed en-
tirely to the use of source domain knowledge, or whether
the clique scoring process might be acting as a novel form
of structure learning in itself, providing a performance boost
independent of the particular structural knowledge being im-
ported from the source domain.

We propose a simple modification to DTM, which we call
“self-transfer”. The inspiration for self-transfer is related to
the persistent question in transfer learning of how to know
when two tasks are sufficiently related that transfer between
them will be worthwhile. For transfer to be at its most effec-
tive, we generally want the source and target tasks to be as
similar as possible. Since no two domains are more similar
to each other than a domain is to itself, we propose a method
that effectively applies DTM to a single domain as both
source and target. We first construct an exhaustive list of all
possible first-order clauses in the domain up to some maxi-
mum length and number of object variables. These clauses
are then abstracted into second-order cliques and scored via
the method described above. Thek top-scoring cliques are
then instantiated back into first-order clauses of the domain.
From this set of clauses, we use the “greedy transfer with
refinement” method described by Davis and Domingos to
derive a final set of clauses indicating the structure of the do-
main. That is, we greedily select from the instantiated first-
order clauses until no additional clause improves the WPLL,
and then we refine the domain theory with MSL.

One might expect that using the same domain as both
source and target would forfeit some of the expected benefits
of transfer, for example the improved generalization perfor-
mance which often results from considering a broader class
of related tasks (Caruana 1997). Surprisingly, this does not
appear to be the case: in our experiments the results of self-
transfer were generally comparable to the best results from
DTM. While there may exist circumstances in which cross-
domain transfer through DTM is more effective (e.g. if the
target domain has very little data available, or if we wish to

True Total
Types Predicates Constants Atoms Atoms

IMDB 5 5 251 1039 55722

UW-CSE 8 10 442 1407 174785

WebKB 3 3 4953 283489 20663916

Yeast Protein 7 7 2470 15015 4533900

Table 1: Datasets used.

learn structure for many domains using the same source do-
main to avoid repeating the clique-scoring process for each
domain), we demonstrate that in many cases the benefits of
transfer observed using DTM are achievable through simple
self-transfer.

This observation strongly suggests that much of the utility
of DTM comes, not from the ability to transfer knowledge
between domains, but from the introduction of a new learn-
ing process, namely the process of clique scoring in con-
junction with first-order instantiation and greedy selection.
In fact, we find that clique scoring with greedy selection
(CSGL) alone yields results equalling or exceeding those of
MSL.

Experiments
To evaluate the effectiveness of self-transfer relative toother
transfer cases, as well as the effectiveness of CSGL as a
standalone structure learning algorithm, we performed ex-
periments using data from several real-world domains. We
used the implementation of MSL in the publicly available
Alchemy package (Kok et al. 2009) along with an Alchemy-
based implementation of DTM provided by Jesse Davis.

Domains

For comparison with the results of Davis and Domingos
(2009), we used datasets representing the WebKB and Yeast
Protein domains. Both datasets were provided by Jesse
Davis.

WebKB. This dataset consists of labeled web pages from
the computer science departments of four universities, with
predicates indicating the words occurring on each page, the
class label of each page (faculty, student, course, etc.), and
the links between pages. The data from each university is
treated as a separate fold. We attempt to predict the truth
values of all groundings of theLinked andPageClass
predicates. The data is originally sourced from Craven and
Slattery (2001), and the version used both in this paper and
in (Davis and Domingos 2009) is equivalent to the version
publicly available atalchemy.cs.washington.edu,
with the following modifications: the seven single-arity
predicatesFacultyPage, CoursePage, etc. indicating
the class label of a page are collapsed into a single predicate
PageClass of arity two, and only theHas, Linked, and
PageClass predicates are considered.

Yeast Protein. This dataset contains information on
protein location, function, phenotype, class, and enzymes
within the yeastSaccharomyces cerevisiae, as well as pro-
tein interactions and protein complex data, all from the



MIPS Comprehensive Yeast Genome Database as of Febru-
ary 2005 (Mewes et al. 2002). We used the version of the
data from Davis and Domingos, which is split into four dis-
joint subsamples which are used as folds, and we attempt to
predict theInteraction andFunction predicates.

We also used two additional domains, both publicly avail-
able fromalchemy.cs.washington.edu:

IMDB. This dataset describes a movie domain, consisting
of movies, actors, directors, etc. and predicates indicating
their relationships. The data was collected fromimdb.com
by Mihalkova and Mooney (2007). The data is split into five
disjoint folds, but in order to maintain consistency with We-
bKB and Yeast, we used only the first four folds. We attempt
to predict theWorkedUnder andWorkedInGenre pred-
icates. Following Kok and Domingos (2009) we omitted
four equality predicates which are superseded by the equal-
ity operator available in Alchemy. In addition, for consis-
tency with WebKB, we collapsed the single-arityActor
andDirector predicates into a single predicateHasRole
with arity two (similar toPageClass in WebKB).

UW-CSE. This dataset, from Richardson and Domingos
(2006), describes anonymized relationships between stu-
dents, faculty, and courses in the University of Washing-
ton Computer Science and Engineering Department. The
data is split into five folds representing the sub-disciplines of
AI, graphics, programming languages, systems, and theory;
again for consistency we used only four folds, omitting the
systems data (chosen randomly). Following Richardson and
Domingos we attempted to predict theAdvisedBy pred-
icate. As with IMDB, we omitted nine redundant equality
predicates, and we collapsed the single-arityStudent and
Professor into a singleHasRank. We also simplified
theTaughtBy andTA predicates of UW-CSE to ignore the
particular quarter in which a course was taught, reducing
the arity of each of those predicates from three to two. This
change was motivated by the fact that DTM can only trans-
fer between predicates having the same arity; because there
are no arity-three predicates in our other datasets these pred-
icates would otherwise have been completely ignored by the
transfer process.

Details of all datasets are given in Table 1.

Experiment 1: DTM vs. Self-Transfer
To compare the effectiveness of cross-domain transfer to that
of self-transfer, we used DTM to perform transfer between
all combinations of source and target domains, including
cases of self-transfer. Each dataset was divided into four
independent folds, on which we performed leave-one-out
cross-validation, training on every subset of three folds and
testing on the fourth. The results represent averages over the
four folds from each domain. For tractability on the WebKB
data, we followed Davis and Domingos in using information
gain on the training set to pick the fifty words most predic-
tive of page class; these were used to train and evaluate the
learned MLN.

In cases of self-transfer, we gathered and scored cliques
using only the training set, not the full dataset. Since in all
other transfer cases we gathered and scored cliques using all
data available from the source domain, this puts self-transfer

at a modest disadvantage in terms of the quantity of data
available during the learning process. That said, within each
domain the cliques which were identified in the three folds
of each training set did not differ significantly from those
obtained using the full four folds, with only minor changes
in ordering in most cases.

Following Davis and Domingos, we allowed MSL to
learn clauses containing constants. We permitted only role
(IMDB), rank (UW-CSE), function (Yeast), and page class
(WebKB) to appear as constants in learned clauses. We eval-
uated DTM withk = 5 andk = 10; because the results
show the same overall trends we report only thek = 10
results here. Source clauses for DTM were generated by
exhaustive search over all clauses containing at most three
literals and three object variables. MSL structure refinement
was time-limited to 20 hours for each trial. Following Kok
and Domingos (2005) and others, we evaluated each set of
learned formulas using the test set conditional log-likelihood
(CLL) and the area under the precision-recall curve (AUC).
The CLL has the advantage of directly measuring the qual-
ity of the probability estimates produced, while the AUC is
useful because it is insensitive to the large number of true
negatives in the data. The CLL is calculated by averaging
over all ground atoms the predicted log-likelihood that each
ground atom takes on its true value, given the learned do-
main theory and the truth values of all other ground atoms as
evidence. AUC is calculated by varying the threshold CLL
above which an atom is predicted to be true.

Experiment 2: CSGL vs. MSL
We measured the performance of clique scoring with greedy
selection as a standalone structure learning algorithm by
comparing its performance to that of MSL. Results for
CSGL on each domain were obtained by omitting the re-
finement step from the self-transfer results of the previous
section, that is, by combining exhaustive search with clique
scoring followed by greedy selection. Evaluation was per-
formed identically to the previous section; we report results
for k = 5 andk = 10.

Results
Table 2 gives the AUC and CLL for all transfer scenarios
using refinement, including self-transfer results (which are
underlined) as well as MSL, which acts as a baseline. Each
figure represents an average over the four different train/test
trials. Note that the results for transfer from WebKB and
Yeast are identical. This is because the ten highest-scoring
cliques are the same in both domains (see Figure 4 for a list-
ing of the top cliques in each domain), so deep transfer pro-
duces the same theories when transferring from either do-
main. Also note that the top five cliques are also identical
across WebKB and Yeast.

The results in Table 2 support the claims of Davis and
Domingos, in that DTM improves on MSL in almost all
cases. Examining self-transfer in particular, we see that
self-transfer is at least competitive with other transfer sce-
narios on all predicates exceptPageClass (where the de-
ficiency is due to a single outlier trial, in which refinement
of the results from greedy selection led to a large decrease



IMDB UW-CSE WebKB Yeast MSL

WorkedInGenre 0.63 0.61 0.61 0.61 0.32

WorkedUnder 0.77 0.23 0.21 0.21 0.03

AdvisedBy 0.08 0.08 0.08 0.08 0.04

Linked 0.01 0.01 0.09 0.09 0.004

PageClass 0.86 0.86 0.68 0.68 0.87

Function 0.34 0.34 0.33 0.33 0.27

Interaction 0.04 0.04 0.10 0.10 0.04

(a) AUC

IMDB UW-CSE WebKB Yeast MSL

WorkedInGenre -0.20 -0.13 -0.37 -0.37 -0.30

WorkedUnder -0.09 -0.17 -0.21 -0.21 -0.23

AdvisedBy -0.03 -0.03 -0.03 -0.03 -0.04

Linked -0.02 -0.02 -0.02 -0.02 -0.02

PageClass -0.07 -0.07 -0.12 -0.12 -0.07

Function -0.18 -0.18 -0.18 -0.18 -0.19

Interaction -0.04 -0.04 -0.03 -0.03 -0.04

(b) CLL

Table 2: Results for DTM vs. self-transfer (underlined).

CSGL-5 CSGL-10 MSL

WorkedInGenre 0.70 0.63 0.32

WorkedUnder 0.26 0.69 0.03

AdvisedBy 0.04 0.06 0.04

Linked 0.06 0.06 0.004

PageClass 0.86 0.86 0.87

Function 0.31 0.31 0.27

Interaction 0.10 0.10 0.04

(a) AUC

CSGL-5 CSGL-10 MSL

WorkedInGenre -0.16 -0.15 -0.30

WorkedUnder -0.14 -0.11 -0.23

AdvisedBy -0.04 -0.03 -0.04

Linked -0.02 -0.02 -0.02

PageClass -0.07 -0.07 -0.07

Function -0.17 -0.17 -0.19

Interaction -0.03 -0.03 -0.04

(b) CLL

Table 3: Results for CSGL (top 5 and top 10 cliques) vs. MSL.

in AUC), and that in fact it performs significantly better
than all other methods in AUC when predicting the pred-
icate WorkedUnder (paired one-tail t-test,p < 0.05).
For no predicate does the best case of cross-domain trans-
fer perform significantly better, in AUC or CLL, than self-
transfer does (paired one-tail t-test,p > 0.10). This is con-
sistent with our claim that the performance gains of DTM
over MSL are not related to DTM’s incorporation of source-
domain knowledge.

Note that self-transfer generally matches or outperforms
other transfer settings despite the limitation of having only
the three folds of the training set from which to identify
the top cliques, as opposed to using the full four folds of
source domain data which are available to the other transfer
scenarios. Also recall that we modified the logical struc-
ture of each dataset so that all of its predicates had arity
two, thus giving DTM the greatest possible freedom to trans-
fer structure between all predicates. If we had allowed the
single-arityStudent andProfessor predicates to re-
main uncollapsed in the UW-CSE dataset, for example, then
DTM would have been unable to relate them to the analo-
gousPageClass predicate in WebKB because it has arity
two. By contrast, self-transfer generates cliques with arities
appropriate to the predicates of each dataset.

Table 3 compares CSGL to MSL as standalone structure
learning algorithms, with two versions of CSGL instantiat-
ing the top five and ten highest-scoring cliques respectively.
Results from CSGL-5 and CSGL-10 were generally compa-
rable, although CSGL-10 fared much better when predict-
ing WorkedUnder. Note that CSGL-10 beats MSL in ev-
ery case except for thePageClass predicate of WebKB,
for which the two methods give approximately equal re-

sults. CGSL-10 also performs comparably to 10-clique self-
transfer in most cases, and substantially better in the case
PageClass, indicating that the additional, costly refine-
ment step required by self-transfer may not be necessary in
order to achieve satisfactory results.

Related Work
Several structure learning algorithms have been proposed for
Markov logic networks, but of particular relevance here is
LHL, the hypergraph lifting approach described by Kok and
Domingos (2009). This is because the unlifted variant of
LHL, known as LHL-FindPaths, bears remarkable similari-
ties to CSGL in its general structure. Like LHL-FindPaths,
CSGL is a bottom-up structure learner which constructs
clauses directly from the data. The exhaustive search step
used by CSGL to generate initial clauses is equivalent to the
process in LHL-FindPaths of enumerating and variabilizing
paths in the unlifted hypergraph, except for the added restric-
tion that every conjunction which LHL-FindPaths considers
must have at least one support in the data. Both methods
evaluate clauses according to how well they represent struc-
tural regularities not found in their sub-clauses; in CSGL this
is implemented by the clique-scoring process in which all
but the top-scoring cliques are discarded, while in LHL this
is done by simply discarding any clause having a WPLL less
than one of its subclauses. Both methods consider as candi-
dates many combinations of negated and non-negated atoms
in the clauses that they generate; in CSGL this is part of the
clique abstraction and instantiation process, while LHL ex-
plicitly constructs partially-negated variants of its clauses.
Finally, both methods arrive at the final MLN structure by
greedily selecting clauses from a list of candidates until no



Rank IMDB UW-CSE WebKB Yeast

1 r(x,y),r(x,z) r(x,y),r(x,z) r(x,y),r(z,y) r(x,y),r(z,y)

2 r(x,y),r(z,y) r(x,y),r(z,y) r(x,y),r(x,z) r(x,y),r(x,z)

3 r(x,y),r(z,y),s(x,z) r(x,y),r(z,y),s(x,z) r(x,y),r(z,y),s(x,x) r(x,y),r(y,x)

4 r(x,y),r(y,z),r(z,x) r(x,y),r(z,y),s(x,x) r(x,y),r(z,y),s(x,z) r(x,y),r(z,y),s(x,z)

5 r(x,y),r(x,z),s(x,x) r(x,y),r(x,z),s(x,x) r(x,y),r(y,x) r(x,y),r(z,y),s(x,x)

6 r(x,y),r(z,y),s(x,x) r(x,x),s(x,x) r(x,y),r(y,z),r(z,x) r(x,y),r(y,z),r(z,x)

7 r(x,y),s(y,z) r(x,y),s(x,z) r(x,x),r(x,y),r(y,x) r(x,y),r(x,z),r(y,x)

8 r(x,y),r(x,z),s(y,z) r(x,x),s(x,x),t(x,y) r(x,y),r(y,x),s(x,z) r(x,y),r(y,x),s(x,z)

9 r(x,y),s(x,z) r(x,y),s(y,z) r(x,y),r(x,z),r(y,x) r(x,x),r(x,y),r(y,x)

10 r(x,y),r(y,x),r(z,x) r(x,x),s(x,x),t(y,x) r(x,y),r(y,x),r(z,x) r(x,y),r(y,x),r(z,x)

Table 4: The top ten cliques in each domain.

clause further improves the overall WPLL.
These parallels show a strong sibling resemblance be-

tween the two algorithms, and for this reason we do not
claim that CSGL is a significant advance in the state of the
art for structure learning, especially since LHL-FindPaths
is already itself slow and unwieldy relative to full-fledged,
lifted LHL (we were unable to directly compare CSGL with
LHL because LHL currently has no public implementa-
tion). However, the similarities between CSGL and LHL-
FindPaths do provide strong intuition for interpreting CSGL,
and therefore DTM, as a structure learning algorithm.

One alternative to DTM for transfer learning in MLNs
is TAMAR (Mihalkova, Huynh, and Mooney 2007), which
discovers mappings between predicates in the source do-
main and predicates in the destination domain and then re-
vises the MLN which is produced by the set of mapped
clauses. Although TAMAR does explicitly use structure
learning techniques to perform revision in the target domain,
it outsources the process of learning in the source domain
(its input is merely a set of source-domain clauses, which
may be hand-constructed or learned from data using any al-
gorithm) and so there is no obvious way to extend TAMAR
to single-domain structure learning in the manner that we
have shown is possible with DTM.

Conclusion and Future Work
We have shown that DTM can operate within a single do-
main to perform standalone structure learning, and in doing
so perform as well or better than it does when incorporating
knowledge from a separate source domain. Possible direc-
tions for future research include analysis of circumstances in
which DTM might still benefit from cross-domain transfer
(e.g. when the target domain has very little data), identify-
ing other transfer learning mechanisms for which a similar
self-transfer trick could be applied to improve single-task
learning performance, and further exploring the connection
between clique scoring and hypergraph pathfinding. Could
clique scoring be integrated with LHL as a more sophisti-
cated approach to identifying useful clauses?
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