
Introducing Concurrency in CS 1∗

Kim B. Bruce
Department of Computer

Science
Pomona College

Claremont, CA 91711
kim@cs.pomona.edu

Andrea Danyluk
Department of Computer

Science
Williams College

Williamstown, MA 01267
andrea@cs.williams.edu

Thomas Murtagh
Department of Computer

Science
Williams College

Williamstown, MA 01267
tom@cs.williams.edu

ABSTRACT
Because of the growing importance of concurrent program-
ming, many people are trying to figure out where in the cur-
riculum to introduce students to concurrency. In this paper
we discuss the use of concurrency in an introductory com-
puter science course. This course, which has been taught for
ten years, introduces concurrency in the context of event-
driven programming. It also makes use of graphics and
animations with the support of a library that reduces the
syntactic overhead of using these constructs. Students learn
to use separate threads in a way that enables them to write
programs that match their intuitions of the world. While
the separate threads do interact, programs are selected so
that race conditions are generally not an issue.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer Science Education; D.1.3 [Concurrent Program-
ming]: Parallel programming

General Terms
Design, Algorithms

Keywords
CS 1, concurrency, Java, objectdraw

1. INTRODUCTION
The issue of how to effectively write concurrent and par-

allel programs has become increasingly important. Over the
last several years, the Computing Research Association has
sponsored a number of conferences on Grand Research Chal-
lenges in Computer Science and Engineering. The most

∗Research partially supported by NSF CCLI grant DUE-
0088895.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

recent of these, “Revitalizing Computer Architecture Re-
search”, held in December of 2005, identified four grand chal-
lenges. One of those was making parallel programming more
mainstream. The report states:

“The grand challenge is to make parallelism per-
vasive and parallel programming mainstream in
order to enable software to make effective use of
the widely available parallel hardware and con-
tinue the performance improvement trend of the
past several decades. . . . The goal is to make par-
allel programming accessible to the average pro-
grammer. The development of parallel software
should be a core component of the undergraduate
computer science and engineering curriculum.”1

Given the the rapid proliferation of multi- to many-core
architectures and the fact that increases in processor speed
are slowing, it is clear that all students need to learn parallel
programming as an essential skill. In the past, programmers
could count on new generations of processors to speed up
their programs’ execution time with little or no intervention
by the programmer. However, increases in the number of
processors on a chip will not necessarily speed up existing
sequential programs. Programmers will have to rewrite se-
quential programs to take advantage of multiple processors.
While hard problems will likely continue to be solved by spe-
cialized “gurus” in parallel programming, all of our students
must be familiar enough with the ideas of parallel program-
ming to solve the sort of problems they will encounter in
their professional careers.

Good overviews of the importance of concurrent program-
ming are available in recent articles by Sutter and Larus [8,
9]. The following text is excerpted from the latter article:

“For several reasons, the concurrency revolu-
tion is likely to be more disruptive than the OO
revolution. First, concurrency will be integral to
higher performance. . . .

The second reason that concurrency will be
more disruptive than OO is that, although se-
quential programming is hard, concurrent pro-
gramming is demonstrably more difficult.”

Comments such as these have helped convince many com-
puter scientists that we are heading into (yet another) cri-
sis of software development. However, most students do

1Emphasis added.

not yet obtain much exposure to high-level concurrent pro-
gramming. While Computing Curricula 2001 [1] and the
recent 2008 [5] revision specify a four-hour knowledge unit
PF/EventDriven-Programming, few schools appear to be
teaching this material in their introductory course sequences.2

Most students likely see a brief mention of concurrency in
operating systems or architecture courses,3 while many pro-
grams provide advanced electives in parallel programming
and concurrency.

We believe that an introduction to the ideas and difficul-
ties of parallel programming can and should take place in
the traditional CS 1 – CS 2 course sequence. In this paper
we report on our experiences on introducing concurrency as
an integral part of a CS 1 course. As explained below it
is our experience that students find (simple) concurrency
a very natural concept that matches well with their world
view. It is more productive to take advantage of their in-
tuition rather than trying to force program designs into a
single-threaded sequential mode.

2. CONCURRENCY IN CS 1
There has been a great deal of interest in introducing con-

currency in a more central way in the undergraduate CS
curriculum.4 But how early can these ideas be introduced?
Does it even make sense to attempt this in the first two CS
courses?

In the fall of 1999, the authors implemented a major up-
date of the Williams College CS 1 course. With the support
of the specially designed objectdraw library for Java, this
course takes an objects-first approach, uses truly object-
oriented graphics, incorporates event-driven programming
techniques from the beginning, and includes concurrency
quite early in the course. The authors now have ten years of
experience teaching this course first at Williams and later at
Pomona Colleges, and have authored a text book [3] using
this approach.

Our course introduces event-driven programming on the
very first day of class. Students define simple methods that
respond to a variety of input events including the mouse
button being clicked and the mouse being moved. Event-
handling systems typically handle events sequentially. If the
code executed to respond to a mouse click takes a long time,
the system will not be able to react to other events until it
is complete. As a result, code executed in response to such
events must execute quickly or it will destroy the respon-
siveness of the system.

We also make extensive use of graphics and animations.
The display of an animation is often triggered by an event
like a mouse click. Displaying an animation, however, inher-
ently takes a long time. Therefore, it is not reasonable to ex-
ecute all of the code to produce the animation in the method

2Somewhat puzzlingly, the description of the knowledge unit
does not mention concurrency even though concurrency is
needed for non-trivial event-driven programs.
3There is a 6 hour knowledge unit OS/Concurrency in Cur-
ricula 2001, but it is more concerned with the support of
concurrency in operating systems rather than writing con-
current programs. The Curriculum 2008 interim report ex-
presses much concern about the growing importance of con-
currency, but makes no changes in the core curriculum to
reflect this importance.
4See for example the Workshop on Curricula for Concur-
rency and Parallelism at OOPSLA 2009.

that responds to the event. In particular, because screen up-
dates are done by the event-handling thread, performing an
animation in the event-handling thread will generally result
in only the last frame being displayed.

The standard solution to this problem is to include code
in the event handler to create a separate thread to display
the animation. It is possible to design libraries that disguise
this use of concurrency in performing animations by defining
a type of event that occurs each time the next frame of
an animation should be displayed. We wished, however,
to provide an introduction that taught students the correct
programming techniques so that they would not later have to
learn an entirely different way of programming in standard
Java.

As a result, in the third week of the semester we teach
students how to create and execute separate processes. Stu-
dents create classes that extend an objectdraw library class
ActiveObject. ActiveObject is a trivial extension of the
standard Java Thread class. The new class is necessary only
because the standard sleep method of Thread throws an
InterruptedException and we don’t introduce exception
handling until late in the term. The only new feature in
ActiveObject is a pause method that does not throw ex-
ceptions. Students write their first simple program using
separate processes in the fourth week of the term. This pro-
gram implements a simple game that involves dropping a
ball into a box. The Ball class from this program is illus-
trated in Figure 1.

When the ball is created, a filled oval is drawn on the
screen, and the other instance variables are initialized using
the parameters (omitted in the code displayed). At the end
of the constructor, the start message is sent, which results
in the creation of a new thread that begins executing the
run method. The run method results in the ball falling to
the bottom of the screen, where it is determined whether or
not it is completely contained in a box that was passed in
with the constructor.

While this assignment introduces students to the creation
of threads, it is not a very compelling example of a con-
current program. While a separate thread is necessary for
the animation to be displayed, there are really never two
programmer-controlled threads active at the same time while
this program is running. The event-handling thread awak-
ens to launch the Ball thread when the user clicks and then
it waits until another input event occurs.5 Other than the
creation of the thread, there is no interaction between the
thread created in the Ball object and the main event thread.
However, the BoxBall example provides an introduction to
the mechanics of creating threads that prepares the students
to complete a program that depends heavily on concurrency
the following week.

In the fifth week of the term, students implement a simple
version of the FroggerTMgame (see Figure 2). For those who
have not played it, this game involves guiding a frog across a
four-lane highway without getting hit by a car. The program
involves the creation of a separate thread for each car as well
as one thread for each lane whose purpose is to periodically
generate new cars.

The interactions between the cars and frog are very sim-
ple. Every time a thread associated with a car moves the
car, it checks to see if the car has run over the frog. If so,

5The event thread is busy updating the window, but this is
outside of the programmer’s control.

import objectdraw.*;

public class Ball extends ActiveObject {

private static final int PAUSE_TIME = 50;

private static final int DROP_DIST = 10;

private int size;

private FilledOval theBall;

private Box theBox;

private int bottom;

// Create ball and start it falling

public Ball(int size, Location pt, DrawingCanvas c,

Box theBox, int bottom, Text score) {

theBall = new FilledOval(pt,size,size,c);

...

start();

}

// Drop the ball to the bottom of the playing area.

// At bottom, check if it landed in the box.

public void run() {

while (theBall.getY() < bottom - DROP_DIST) {

theBall.move(0,DROP_DIST);

pause(PAUSE_TIME);

}

if (insideBox()) {

score.setText("You got it in!");

theBox.moveBox();

} else {

score.setText("Try again!");

}

theBall.removeFromCanvas();

}

// Return true iff this ball is inside theBox.

public boolean insideBox() {

double leftPoint = theBox.getLeft();

double rightPoint = theBox.getRight();

boolean leftIn = theBall.getX() > leftPoint;

boolean rightIn = (theBall.getX() + size

< rightPoint);

return (leftIn && rightIn);

}

}

Figure 1: Simplified version of Ball class from
BoxBall game.

it sends a kill message to the frog, which results in setting
its instance variable isAlive to false. When the user clicks
to move the frog, the program tests to see if the frog is still
alive. If so, then it is moved appropriately. If not, the click
is ignored unless the user has clicked in a special part of the
screen to reincarnate the frog.

To introduce concurrency at this early point in a student’s
education we must carefully select examples that limit how
much students need to know about concurrency. All of our
example programs are designed so that race conditions will
generally not be an issue. Variables are typically only set
by a single thread or are set consistently by threads with
access to the variable, so the relative timing of threads does

Figure 2: The Frogger game uses separate threads.

not make a difference in the results of program runs. For
example, in Frogger, the fact that all a car does when it
thinks it has killed the frog is set a boolean variable to be
false means that interference is not an issue even if two cars
detected that they overlapped with the frog’s position at
almost the same time.

Our experience has convinced us that students find that
concurrent programming matches well with their intuitions.
When students look at a game like Frogger, they see the
cars as independent entities. Forcing them to implement the
combined motion of all of the cars in one sequential thread
would seem less natural.

This is exactly what would happen if we tried to avoid
introducing threads by instead using a library that provided
a form of “animate” event that occurred each time a new
frame of an animation needed to be drawn. All the cars
would need to be moved one step each time this event oc-
curred. To do this, the students would have to maintain an
array of car positions and write a loop to update the array
and the screen at each step. The resulting solution would
not only seem less natural, it would in fact be more com-
plex. In the concurrent solution, on the other hand, the class
used to implement the motion of the cars is no more compli-
cated than the Ball class shown in Figure 1. In particular,
because each car moves independently (all cars in the same
lane move at the same speed so that they don’t run into each
other), we are able to introduce this lab before we introduce
arrays or other techniques to handle collections of objects.

If we avoid introducing concurrency early, we force stu-
dents to learn to sequentialize naturally concurrent processes.
If we instead introduce concurrency early using examples de-
signed to avoid complex synchronization problems, we en-
able our students to appreciate the power of this approach
while it still seems natural to them.

Threads are used pervasively in the course after the BoxBall
and Frogger examples. In some programs presented or as-
signed in the course, concurrency is necessary in order to
support the timely response to controls in event-driven pro-
gramming, while in others it is used in support of many in-
teracting objects and threads. Examples include labs to play
the Simon game (where a separate thread is used to play a se-
quence of notes stored in an array) and the NibblesTMgame
(where a separate thread is used to move the snake around
the screen – under the control of a user who employs arrow
keys to determine the direction to move). Concurrency also
plays an important role in most of the final projects for the
course – typically variations on games like PacManTM, Space
InvadersTM, TetrisTM, BrickoutTM, CentipedeTM, etc.

Finally as part of our discussion of streams, students learn
about web and mail servers, as well as about sockets and gen-
eral client-server programming. In one of their lab assign-
ments they write a simulator for the “Pictionary”TMgame
in which the program is started on two different computers.
One is designated by a user as a server and the other is run
as a client that connects via a socket. The user interacting
with the server draws a picture which is transmitted one
line segment at a time to the client, where it is drawn on
a canvas. The client then sends guesses to the server until
the client guesses the correct answer. While quite primitive,
it gives the students a feel for how distributed computing
works.

Thus by the end of our first course students have a general
feel for the use of concurrent threads and simple client-server
programming.

3. AN INFORMAL EVALUATION
While we worried a great deal about the introduction of

concurrency during the first offering of the course in the fall
of 1999, we discovered that most students found the notion
of concurrency very natural, with traditionally difficult is-
sues, such as parameter passing, overwhelming concurrency
issues.

While we did not perform a formal evaluation of the ma-
terial, we do have several indicators that suggest that the
introduction of concurrency material was successful. At the
end of the spring 2009 term we asked our students to rank
our labs on educational value, difficulty, and fun. We used
a scale of 1 to 5 where 1 is low and 5 is high.

Lab Ed Value Difficulty Fun

Intro/eclipse 3.3 1.5 2.8
Laundry/conditionals 3.8 2.3 3.1

Magnets/class 3.4 2.7 2.8
Boxball/parameters 3.7 2.8 3.3

Frogger/concurrency 4.4 3.7 3.8
GUI 3.8 1.9 3.0

Recursive Picts 3.8 3.1 3.2
Recursive Lists 4.3 3.3 3.5
Simon/arrays 3.7 3.3 3.6

Nibbles/2-dim arrays 4.3 3.7 4.1
Datamining/strings 3.8 3.9 2.0

Pictionary/streams 3.6 2.3 3.5
TestProg 2 (Tetris) 3.9 4.4 3.6

Overall Average 3.8 3.0 3.3
Average/Concurrency 3.9 3.4 3.7
Average/Nonconcur. 3.7 2.7 2.9

Figure 3: Student evaluation of CS 1 labs. Labs with
significant use of concurrency are in boldface.

The laboratories that involved concurrency were heavily
weighted toward the end of the course, including the final
test program and both array programs, no doubt impacting
student ratings of difficulty. Nevertheless, we found the com-
parisons interesting. Because they involved some of the most
complex programs, it was not a surprise that the average
difficulty of the concurrent programs was distinctly above
those of the others (3.4 versus 2.7). However the educational
value of the concurrent programs were slightly higher than
the others, while the “fun” rating was considerably higher.

Interestingly, the highest scores in “fun”were also associated
with higher levels of difficulty and educational value, as seen
with the Frogger and Nibbles labs.

As another data point, for the final project in the 2009
spring term offering of the CS 1 course at Pomona College,
students had a choice of writing a version of the Tetris game
where the tetris pieces are animated by separate threads (the
main event thread handles user interactions – key presses –
with the game) or of writing a simplified facebook-style ap-
plication that involved no concurrency. 26 of the 28 students
enrolled in the course chose to do the Tetris game. The av-
erage grade on the assignment was 91.9 out of a maximum
of 100. Other semesters have resulted in similar scores. The
final project at Pomona in the fall of 2007 was a simplified
version of the centipede game. In that game, one thread
animated all of the pieces of the centipede, separate threads
animated the movement of each of the bullets shot to destroy
the centipede, and the main event thread responded to user
interactions via the keyboard. That semester the average
score for the final project was 98.4 (extra credit resulted in
a top score of 103 for that assignment).

These grades, while not a perfect measure of student learn-
ing, do indicate that students were able to succeed in writ-
ing relatively sophisticated programs that use simple forms
of concurrency. In particular the concurrency was used in
the programs to animate motion of game components in
the games and to respond to user input during this anima-
tion. Moreover, threads were able to communicate by call-
ing methods that resulted in changes to instance variables
whose values were accessed by other threads. While race
conditions were avoided in the programming assignments,
they were discussed in class and are tested on most final
exams.

4. WHAT ABOUT RACE CONDITIONS?
As noted above, we are able to hold off on the discussion of

race conditions and the need to use synchronized methods
by carefully assigning programs that minimize opportuni-
ties for interference. However, as a matter of principle, we
do introduce the problem of race conditions and the use of
synchronized later in the semester as we want students to
be aware of the complexities of concurrent programming.

We introduce a simple example to illustrate race condi-
tions. We demonstrate a program to simulate two ATMs
that are simultaneously accessing the same account. One
ATM withdraws $100 from the account a total of 200 times,
while the second deposits $100 to the account the same num-
ber of times. When the program is run, the students are
surprised when the final balance of the account is different
from the initial balance. They are even more surprised when
running the program multiple times results in different final
balances.

The difficulty lies in the (unsynchronized) method that
changes the balance in response to a deposit or withdrawal.

public void changeBalance(int amount) {

int newBalance = balance + amount;

display.setText("" + newBalance);

balance = newBalance;

}

The problem with this code (which is written a bit oddly
in order to increase the odds that a race condition will

result)6 is that between the first line and last line of the
method, another thread can come in and reset the balance.

We then illustrate how, with only one transaction on each
ATM, we can obtain a balance of the expected $1000 or the
unexpected values of $900 or $1100. The unexpected values
result when one process starts executing the changeBalance
method while the other is in the midst of executing the same
method – having updated newBalance, but not yet resetting
balance.

The students find this a compelling example (they all in-
teract with ATM machines regularly and tend not to think
of them as behaving randomly!). A question on the final
exam consistently illustrates that the vast majority of stu-
dents understand the issue and how to fix it (in this case by
simply making the changeBalance method synchronized).

While this doesn’t address all the possible problems with
concurrent programming, it sets students up to understand
that there are issues, which can be explored in later courses.

5. RELATED WORK
There are many possible approaches to introducing con-

currency in a CS 1 course. We discuss a few here.
Lynn Andrea Stein’s approach [7] is the most similar to

ours. She proposed focusing the introductory course on in-
teractions, using concurrency. More recently that course
seems to have shifted from Java to Python, while still em-
phasizing interaction. We have not shifted our course as
dramatically as hers to focus on interaction, but instead em-
phasize concurrency as a natural way of modelling problems
and of programming solutions to them.

Ernst and Stevenson [4] describe their efforts to integrate
concurrency into their undergraduate curriculum, including
CS 1. Their focus is on traditional data parallel processing
where processing a collection of data is divided into several
threads, each of which handles a subset of the data. Gen-
erally there is little to no interaction between threads aside
from the main thread waiting for all of the subthreads to
finish their computations before resuming. This is the tra-
ditional style of concurrency that shows up frequently in sci-
entific computation, but leads to limited kinds of programs
compared with those where different objects interact more
significantly. Our approach is different in that we provide
a more task-parallel approach where different threads are
performing different kinds of actions and have some (lim-
ited) interactions while executing, rather than waiting for
subtasks to terminate.

Yet another approach is exemplified by Sanders & van
Dam [6], who choose to hide concurrency by using a timer
class to trigger regularly-spaced events that can be handled.
Students write simple methods that are designed to react
to a single event. However, as these events can be gener-
ated frequently, they can trigger animations generated as
the responses to these events.

Ben-Ari and Kolikant [2] describe a course on concurrent
and distributed systems designed for high school students.
This was a much more specialized course that introduced
students to more of the difficulties of concurrency with more
emphasis on topics such as mutual exclusion, deadlock, and

6The setText method executed in the second line refreshes
a value displayed on the screen, providing a likely opportu-
nity for another thread to grab the processor and resume
executing.

livelock. We expect that their work will be helpful in de-
signing follow-up courses to the one described here.

There are indeed many ways that concurrency can be in-
tegrated into an introductory course. Our own approach has
the advantage of matching students’ intuitions of agents in-
teracting while executing concurrently. While we limit the
interactions between threads to avoid race conditions, stu-
dents learn how to use concurrent processes to solve prob-
lems in ways more natural than attempting to sequentialize
the processes.

6. CONCLUSIONS
In this paper, we have described the treatment of concur-

rency in the CS 1 course that the authors have taught over
the last ten years. Students have reacted very positively to
this course and informal evidence presented indicates that
students both enjoy this material and find it educationally
valuable. We hope to see many more groups experiment-
ing with how to introduce concurrency early in students’
undergraduate careers so that they will learn to think of
concurrency as a natural approach to problems.

With the increasing importance of many core computers,
it is becoming critical that our students become more com-
fortable and knowledgeable about concurrency. While what
we have described here is only a first step for students, and
many important complications are not addressed, we be-
lieve that it ise an important first step that can be built on
in more advanced courses, starting with CS 2.

7. REFERENCES
[1] Computing curricula 2001. J. Educ. Resour. Comput.,

page 1.

[2] M. Ben-Ari and Y. B.-D. Kolikant. Thinking parallel:
the process of learning concurrency. In ITiCSE ’99:
Proceedings of the 4th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in
computer science education, pages 13–16, New York,
NY, USA, 1999. ACM.

[3] K. B. Bruce, A. Danyluk, and T. Murtagh. Java: An
eventful approach. Prentice Hall, 2006.

[4] D. J. Ernst and D. E. Stevenson. Concurrent CS:
preparing students for a multicore world. In ITiCSE
’08: Proceedings of the 13th annual conference on
Innovation and technology in computer science
education, pages 230–234, New York, NY, USA, 2008.
ACM.

[5] Interim Review Task Force. Computer science
curriculum 2008: An interim revision of CS 2001.
Technical report, ACM / IEEE CS, 2008.

[6] K. E. Sanders and A. van Dam. Object-Oriented
Programming in Java: A Graphical Approach.
Addison-Wesley, 2006.

[7] L. A. Stein. What we’ve swept under the rug: Radically
rethinking CS 1. Computer Science Education,
8(2):118–129, 1998.

[8] H. Sutter. The free lunch is over: a fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3), 2005.

[9] H. Sutter and J. Larus. Software and the concurrency
revolution. Queue, 3(7):54–62, 2005.

