
Chapter 2

Encoding Text with a Small
Alphabet

Given the nature of the Internet, we can break the process of understanding
how information is transmitted into two components. First, we have to
figure out how each type of information we might wish to transmit through
the network can be represented using the binary alphabet. Then, we have to
learn how 0’s and 1’s can actually be sent through a wire. We will consider
how to represent information in binary in this and the following chapter.
Then, with this understanding we will look at the process of transmitting
binary information in the following chapter.

It is clear that it is possible to transmit information of many forms.
Images, sound, and movies are among the obvious examples. Many Internet
protocols, including those used for email and text messaging, however, rely
mainly on the transmission of text messages. To simplify our task, we will
therefore initially limit our attention to discussing how text is encoded in
binary.

Even with our attention limited to encoding text, working in binary
can be painful. Fortunately, we can postpone the ordeal of working with
binary while grasping most of the principles behind binary encodings by
first considering the problem of how we might encode text using only the
ten digits 0 through 9. Then, we can apply the understanding we gain about
such encodings to the less familiar world of binary.

15

16 CHAPTER 2. ENCODING TEXT WITH A SMALL ALPHABET

2.1 Doing without Delimiters

You can easily represent letters from the alphabet using only digits by simply
numbering the letters. For example, the table below shows an obvious way
to number the letters of the alphabet:

1. a 11. k 21. u
2. b 12. l 22. v
3. c 13. m 23. w
4. d 14. n 24. x
5. e 15. o 25. y
6. f 16. p 26. z
7. g 17. q
8. h 18. r
9. i 19. s

10. j 20. t

Given this table, we can represent any word by listing the numbers for
each of the letters in order. For example, “bad” could be encoded as “214.”
In a scheme like this, the sequences used to represent individual letters are
called codewords. That is, “2” is the codeword for b and “18” is the codeword
for r. A sequence of codewords like “214” that is intended to represent a
complete message will be called a coded message.

The simple scheme described by the table above runs into trouble very
quickly if we try encoding something just a bit more complicated like the
word “barn”. The coded message derived from our table for “barn” would
be “211814” since b = 2, a = 1, r = 18 and n = 14. Unfortunately, this
is also the coded message for “urn” since u = 21, r = 18 and n = 14. If
we were actually using a scheme like this to send text through a network,
the computer (or person) on the other end would be confused if the coded
message “211814” arrived. The problem here is that there is no way for
the receiver to know whether to interpret “21” as a “2” representing “b”
followed by a “1” representing “a” or as the pair “21” representing “u”.

We might think of fixing this by separating codewords that represent
distinct letters from one another with commas so that barn would be rep-
resented by “2,1,18,14” and urn would be represented by “21,18,14”. If we
do this, however, we are no longer representing text using just the 10 digits.
We are now using an eleventh character in our scheme, the comma. It may
not seem like a big issue to use 11 symbols rather than 10, but remember
our ultimate goal is to use the techniques we explore using the 10 decimal
digits to understand encoding schemes based on binary digits. The whole

2.1. DOING WITHOUT DELIMITERS 17

point of binary is to get down to the smallest useful alphabet, the alphabet
with only two symbols. If one of the two symbols used in that case is a
comma, we really only have one symbol to work with. So, we need to learn
to do without commas now!

You might get the clever idea that we can accomplish the purpose of the
commas without actually using an extra symbol by simply leaving spaces
between the codewords where the commas would have appeared. Thus, barn
would be represented by “2 1 18 14” and urn would be represented by “21
18 14”. Alas, this doesn’t really solve the problem. What it does instead is
point out that the space is as significant a symbol as the comma is. Although
they don’t use up any ink, spaces definitely convey information. Consider
the two sentences:

“I want you to take him a part.”

and

“I want you to take him apart.”

Spaces in text are symbols just like the letters of the alphabet. If we use
spaces to separate the digits as in “21 18 14” we are again using an 11
symbol alphabet rather than a 10 symbol alphabet.

Fortunately, there are approaches that will enable us to tell barn and
urn apart without using anything other than the 10 digits. One simple tech-
nique is to fix the number of digits used to represent letters from the original
alphabet. The problem in our original scheme is that some letters from the
alphabet are encoded as a single digit while others require 2 digits. The
problem goes away if we use two digits for every codeword. We can do this
by starting the numbering of the alphabet with a two digit number (i.e., a
= 10, b = 11, c = 12, etc.) or even more simply by adding a leading zero to
each single digit number (i.e. a = 01, b = 02, etc.). With this change, barn
becomes “02011814” while urn is represented as “211814”. Thus, by choos-
ing some fixed number of digits to represent each symbol in the alphabet,
we can avoid the need to use any delimiters in our representation scheme.

2.1.1 How Many Digits

If we avoid using delimiters by fixing the number of digits used to represent
each symbol of the alphabet, we have to decide how many digits to use.
Clearly, 1 digit would not be enough. It would only enable us to encode 10
distinct letters. On the other hand, 2 digits seems sufficient. With 2 digits

18 CHAPTER 2. ENCODING TEXT WITH A SMALL ALPHABET

we can encode 100 distinct symbols and there are only 26 symbols in the
alphabet.

If we want to use our encoding scheme to represent the contents of real
messages, of course, we will have to be prepared to represent more than the
26 lower case letters. We will certainly have to handle upper case letters. We
could do this by numbering the upper case letter with the next 26 numbers
so that A = 27, B = 28 and so on. Then, of course, there are the digits
themselves. If someone typed the number “4” in an e-mail message, we could
not just encode it as “4”. First, our scheme depends on using exactly two
digits for each character. So, we have to use a pair of digits to encode the
single character “4”. Moreover, given the encoding rules we have proposed
so far, we could not use “04” to encode “4” because “04” already encodes
“d”.

The simplest alternative is to number the digits as we numbered the
letters starting with the first number that hasn’t yet been used for an upper
or lower case letter, 53. So, we would represent 0 as “53”, 1 as “54”, 2 as
“55” and so on. Of course, we could start over again and re-number the
letters starting at 10 so that we could use “00”, “01”, “02”, ... and “09”
for the digits. This might seem more “natural” to us, but it wouldn’t be
superior to the other scheme in any significant way.

Next, we have to worry about punctuation marks that might appear
in the text. Things like commas, quotes, semi-colons and question marks
certainly need to be included. Also, just as we discovered we had to think
of spaces as symbols if we tried to use them as delimiters, we better provide
a way to encode the spaces that appear between words in messages.

If it still troubles you to think of the space as a character that is as
important as things like “e”s and periods, think a bit about how an encoding
scheme like ours might actually be used in a computer. When you press a
key on your keyboard, the electronic components in the keyboard have to
send some sort of message through the cable connecting the keyboard to the
computer to tell the computer what character was typed. These messages are
numbers expressed in binary. For our purposes, however, we could imagine
that they were expressed using the scheme we are developing. That is, when
one typed a “c” on the keyboard, the keyboard might send the sequence “03”
to the computer. Clearly, for such a system to work, the keyboard needs
some message it can send when you press the space bar. Similarly, it needs to
send messages informing the computer when you press the return or tab key.
So, in addition to the normally recognized punctuation marks, any scheme
for encoding text in a computer must include encodings for characters like
the space, tab and return.

2.1. DOING WITHOUT DELIMITERS 19

Looking at the keyboard in front of me I see that the combination of
punctuation marks, the space key, etc. account for about 36 additional
symbols. Together, the 52 alphabetic character, the 10 digits and the punc-
tuation marks account for about 98 characters that need to be encoded.

This should make you nervous.

Recall that if we use 2 decimal digits to encode each symbol, we can
encode up to 100 distinct symbols. At this point, we are already using all
the pairs up to about 98. There are only 2 left: 99, and 00. Basically, there
isn’t much room left for expansion.

Suppose someone wants to design a new keyboard that provides more
characters. For example, while my keyboard includes the “$”, it does not
include the symbol for the British pound, £. It is also missing the section
symbol, §, and the copyright symbol, c©. If the new keyboard is to include
more than 2 such additional characters, our code must be revised. If we
wanted to be able to encode more than 100 distinct characters, we would
have to use 3 digits for each codeword rather than just 2. We need not
change the values of the numbers associated with symbols in our original
scheme, but each character would need to be encoded using three digits.
Thus, “a” would be encoded as “001” rather than as “01”, “b” would be
encoded as “002”, and so on. With this scheme, we could encode up to 1000
distinct characters.

To appreciate the impact of making such a change in a coding scheme,
consider again how such a code would be used. Computer keyboards might
use the code to send signals to an attached computer when a key is pressed.
The connection between the keys on the keyboard and the digits sent will
be built into the hardware of the keyboard. If it later became necessary to
change the code, the keyboard would have to be discarded and replaced with
a new keyboard designed to use the new code. Chances are, in fact, that the
computer would be similarly dependent on the code and have to be discarded
with the keyboard. Thus, even though we can easily think up many different
codes for keyboard symbols, it isn’t easy to change from one to another. In
the real world, leaving room for expansion may make it possible to extend
the code later without requiring costly hardware replacements.

20 CHAPTER 2. ENCODING TEXT WITH A SMALL ALPHABET

2.2 Moving from Decimal to Binary

Encoding text in binary is fundamentally the same as encoding text using
decimal digits. The simplest approach is again to picked a fixed number
of binary digits to use for every character. It is still important to choose
enough digits to leave room for expansion. The big difference is that there
are only two distinct digits in binary, 0 and 1. As a result, longer codewords
are required to represent each character. While we saw that 3 decimal
digits would be sufficient to represent all of the characters used when writing
English text leaving plenty of room for expansion, we will see that 7 or 8
digits are required in binary.

Suppose, for a moment, that we did try to get away with just 2 binary
digits. We saw that 2 decimal digits would be enough to encode up to 100
distinct characters. How many characters can 2 binary digits encode? The
short answer is not many! If you start writing down all the combinations of
pairs of binary digits you can find, you will run out after writing just four
pairs: 00, 11, 01, 10.

Even if you allow yourself to use 3 binary digits, the collection of pos-
sibilities doesn’t get much bigger. In particular, with 3 digits the only
combinations are 000, 011, 001, 010, 100, 111, 101, and 110.

Writing down all the possibilities for longer sequences of binary digits
would be painful. Luckily, there is a simple rule at work. There were four 2
digit binary sequences and eight 3 digit binary sequences. Allowing an extra
digit doubled the number of possibilities. If we allowed a 4th digit, we would
find there were again twice as many possibilities giving 16. In general, if
we use N binary digits, we will have enough combinations to represent 2N

distinct symbols. Therefore, with 6 binary digits, we could handle 26 = 64
symbols. This is fewer than the 98 symbols on my keyboard. With 7 binary
digits we could handle 27 = 128 symbols. This will handle the 98 symbols
found on my keyboard and leave a reasonable amount of room for expansion.
In fact, the code that is actually used to represent text characters on most
computers uses 7 binary digits.

The code used to represent text in most computers and network mes-
sages today is called ASCII, which stands for “American Standard Code
for Information Interchange.” It is very much like the decimal code we de-
scribed above. The letter “a” is represented as 1100001, which is the binary
form for the decimal number 97. The letter “b” is represented by 1100010,
which corresponds to 98. The remaining letters are associated with consec-
utive binary numbers. Capital letters work similarly with “A” represented
by 1000001, the binary equivalent of 65. For those who really want to know

2.2. MOVING FROM DECIMAL TO BINARY 21

more, a list of ASCII codes can be found in Figure 2.1.
It is common to add one additional digit to the sequences of 7 binary

digits used to represent symbols by the ASCII code. The value of this
extra digit is chosen in a way that makes it possible to detect accidental
changes to the sequence of digits that might occur in transmission. This
extra digit is called a parity bit. We will discuss parity bits in more detail
in a later chapter. For now, the main point is that characters encoded in
ASCII actually occupy 8 binary digits of computer memory.

Another widely used code for representing text in binary is called EBCDIC
(for Extended Binary Coded Decimal Interchange Code). It was developed
by IBM and used as the standard code on several series of IBM computers.
When IBM mainframes dominated the computing world, EBCDIC, rather
than ASCII, was the most widely used text encoding scheme. EBCDIC
differed from ASCII in many ways. The same sequence of digits that rep-
resented “z” in ASCII was used to encode the colon in EBCDIC. They did,
however, use a similar number of binary digits to encode characters. In
EBCDIC each character was encoded using 8 binary digits.

The encoding of text data is quite important in computing and computer
networking. It is important enough that the unit of memory required to
encode characters of text in these common codes is also used as the standard
unit for measuring memory. The actual memory of a computer is composed
of millions of binary digits. The term bit is used to refer to a single binary
digit. The hardware of most machines, however is designed so that the
smallest unit of memory that can be easily, independently accessed by a
program is a group of 8 bits. Eight bits is enough to hold one character in
either of the most widely used text encoding schemes. Such a group is called
a byte.

Before leaving the subject of encoding text using fixed-length binary
codewords, we should mention one other standard for character representa-
tion, a relatively new code named Unicode. All of the examples given above
have been embarrassingly ethnocentric. We have explained how to represent
English text, but ignored the fact that many other languages exist, are used
widely, and often use different alphabets. The 128 possible letters provided
by ASCII are woefully inadequate to represent the variety of characters that
must be encoded if we are to support everything from English to Greek to
Chinese. Unicode is a text encoding standard designed to embrace all the
world’s alphabets. Rather than using 7 or 8 bits, Unicode represents each
character in 16 bits enabling it to handle up to 65,536 (= 216) distinct sym-
bols. For compatibility sake, the letters and symbols available using ASCII
are encoded in Unicode by simply adding enough zeros to the left end of the

22 CHAPTER 2. ENCODING TEXT WITH A SMALL ALPHABET

Figure 2.1: Table of ASCII codes

2.2. MOVING FROM DECIMAL TO BINARY 23

ASCII encoding to get 16 bits.

