
Lab 9: Huff(man)ing and Puffing
Due April 18/19 (Implementation plans due 4/16, reports due 4/20)

The number of bits required to encode an image for digital storage or transmission can be quite large.
Consumer quality digital cameras take pictures that are 2560 pixels wide and 1920 pixels tall or larger.
Such an image contains a total of 4915200 pixels or just about 5 megapixels. Each pixel is represented by
three 8-bit number encoding it redness, greenness and blueness. In raw form, therefore, it would take
117,964,800 bits to represent such an image. On a 10 megabit/second Ethernet it would take over 10 sec-
onds to transmit such an image without even accounting for collisions or other overhead.

To make it possible to transmit images more quickly and to store large numbers of images on computer
disks and camera memory cards, considerable effort has been devoted to devising techniques for com-
pressing the information in digital images. File formats like GIF, JPEG, and PNG represent the imple-
mentation of some of the compression techniques that have been developed.

To help you appreciate both how one might go about compressing an image and how difficult it is to
achieve high levels of compression, we would like you to implement components of several implementa-
tion techniques and then evaluate their effectiveness. Note: The “evaluate” aspect is a new feature of this
lab. In addition to writing a Java program this week, we actually want you to write a lab report summa-
rizing the data you collect using the program you have written. These reports will be collected in class
after the programs are completed.

Image Simplification
Earlier in the semester, we discussed the use of Huffman codes to reduce the number of bits required to
encode a text message. It is possible to use Huffman codes to compress image data. To do this, one
would treat the 256 values that can appear in a pixel array as the letters of an alphabet containing 256
symbols. Based on Huffman’s algorithm, short codewords would be assigned to the brightness values
that appeared frequently in a pixel array and longer codewords would be assigned to the values that ap-
peared less frequently. Then, the table of pixel values would all be translated from their original 8-bit bi-
nary codes to the Huffman codewords that had been assigned and the entire list of codewords would be
saved or transmitted.1 Unfortunately, using Huffman codes to compress image data in this way is not
very effective.

Huffman codes exploit the fact that some symbols
in an image occur more frequently than others.
The more extreme the differences between the
frequencies with which symbols occur in the data,
the greater the degree of compression a Huffman
code will provide. The frequencies with which
brightness values occur within an image tend to
be too uniform for effective Huffman coding.
Consider the image shown on the right.

CS 134 Spring 2007

1

1 In addition, one would have to encode the Huffman tree describing the code used and the width and height of the
image. Since this information would require relatively few bits compared to those used to represent the pixel array
values, we will not account for the cost of encoding it in this lab.

The graph shown on the left is a histo-
gram of the frequencies with which vari-
ous brightness values appear in this im-
age. The histogram ranges from bright-
ness 0 to 255. There is a significant peak
around 200 and a smaller peak between
50 and 60. Within the range of 150 values
between these peaks, the histogram is
rather flat. The distribution of these
brightness values is uniform. Huffman
coding cannot do significantly better than
a fixed length code when applied to such
data. In fact, a Huffman encoding of the
brightness values in this image would re-
quire 7.94 bits per pixel, less than 1% less

than the obvious fixed length code. Fortunately, there are techniques we can use to encode the brightness
values of an image that enable Huffman coding to work far more effectively. As an example, consider the
following transformation.

In the last lab, you constructed a filter that replaced blocks of pixel values with their average brightness.
Suppose we instead processed blocks by leaving the value in the upper left corner unchanged and replac-
ing each of the other brightness values in the block with the difference between the original value and the
value found in the upper left corner. For example, if we started with the 2x2 block of pixels:

A B We would replace its
values with the values:

A B - A
C D C - A D - A

The pixels that are changed by this transformation are likely to have fairly small values. In most images,
the shades of pixels that are adjacent are very similar. Therefore the differences we compute while per-
forming this transformation are likely to be small values. These pixels account for 75% of the pixels in
the transformed image. Accordingly, this transformation will change the distribution of values in the
pixel array significantly. A significant number of the pixel values will be close to 0.

Unfortunately, this also means that a signifi-
cant number of the values we computed will be
negative and therefore fall outside the original
range of pixels. We can adjust for this by add-
ing 128 to each difference, centering the new
values in the range of existing values.

The result of applying this transformation to all
2x2 blocks in the image presented earlier is
shown on the right. Since one quarter of the
pixel values are unchanged, the original image
remains visible. The changed pixels give the
new image a dull gray look.

Note that we can recover all of the pixel values
from the original image given just the trans-
formed image. If we process each block
within the transformed image by adding the
value in the corner of the block to all of the

CS 134 Spring 2007

2

other values, the original image will re-
appear.

The histogram of the transformed image
is shown on the right. The distribution
of brightness values is no longer uni-
form. Instead, there is a significant peak
at 128, reflecting the fact that most of the
differences computed while making the
transformation were near 0. Huffman
coding the collection of pixel values is
therefore much more effective. The av-
erage number of bits per pixel is roughly
7, reflecting a 12% savings overall. As
a result, this transformation provides a
way to compress an image for transmission. We first apply the transformation. Then we Huffman encode
the resulting pixel values and transmit them. When this transmission is received, the receiving computer
can first decode the Huffman codewords to restore the brightness values of the transformed image. Fi-
nally, the corner values can be added to the other values in each block to restore the original image.

The savings obtained using this technique will vary from image to image depending on how the bright-
ness value in each image are distributed. Changing from 2 x 2 blocks to larger blocks would also effect
the saving. As a result, the only way to really evaluate such a technique is to try several variants on a se-
lection of typical (and atypical) images and analyze the results. For this lab, we want you to conduct such
an experiment.

The process of replacing most of the pixels in a block with their differences from the pixel in the corner of
the block is just one way one might transform an image to increase the effectiveness of Huffman coding.
Any transformation that will a) lead to a less uniform set of values in the image’s encoding and b) provide
the means to restore the original brightness value or something that closely approximates them can be
used. We will call such a transformation an image simplification.

For this lab, we want you to implement four image simplification algorithms described below. In addi-
tion, we want you to implement an algorithm that computes the bits per pixel required to encode a set of
brightness values using a Huffman code. Then, you will use these tools together to evaluate the effective-
ness of five image simplification algorithms including the four you have implemented.

The Algorithms
Range Reduction
The first algorithm we want you to evaluate is the simple technique of reducing the range of brightness
values used to encode the image by dividing all of the brightness values by a fixed constant. Because in-
teger division will be used to do this range reduction, pixels that had different but similar values in the
original image will be represented by a single value after this transformation is applied. This does not
actually change the shape of the histogram associated with an image, but by reducing the number of dis-
tinct values used, it makes it possible to encode the values with fewer bits. On the other hand, given the
reduced brightness values, it is not possible to restore the original image exactly. As long as the value
used to divide the pixel values is not too large, however, multiplying all of the values in the transformed
image will produce a close approximation of the original image. Such a transformation is said to be lossy.
By contrast, the block differencing simplification described in our introduction is said to be lossless.

We will not actually make you implement this transformation. Instead we will provide you with a com-
pleted implementation in a starter project for the lab. We include this simplification for two reasons.
First, when you are collecting data on the simplification schemes you implement, it can serve as a base-

CS 134 Spring 2007

3

line. Second, just as we had you implement filters by extending an ImageFilter class last week, in this
week’s lab, you will implement simplification schemes by extending an ImageSimplifier class pro-
vided in the starter project. The two implementations of range reduction included in the starter project
will serve as an examples of how you should define your simplifiers by extendend ImageSimplifier.

Waterfall
The first simplification scheme we want you to implement involves computing the difference between
pixel values much like the block corners scheme described in the introduction. The idea is very simple.
Leave the pixels along the topmost row of the image unchanged. Replace every other value in each pixel
array with the difference between its original value and the original value of the pixel directly above it.

The name of this algorithm comes from the process used to restore the original image given this collec-
tion of transformed values. Starting at the top of each column you will add the first pixel value (which
will be unchanged) to the value below it (which will be a difference). The sum of these two value will be
the original value of the lower pixel. You then repeat this process “falling” down from the top of the col-
umn of pixels to the bottom. When you are done, all of the pixels values will be restored to those of the
original image.

The waterfall algorithm should be implemented by defining a WaterfallSimplifier class that extends
the ImageSimplifier class included in the project starter folder. Its implementation should mimic the
RangeSimplier1 class that we have also included in the starter.

Wavelet
While the waterfall algorithm processes an image’s pixels in pairs from top to bottom, the Wavelet simpli-
fication process works with pairs from left to right. It also is more like the corner block scheme in that it
works on small groups of pixels independently rather than processing all of the pixels in an entire row or
column together.

The wavelet simplifier works with pairs of pixel (i.e., 2 x 1 blocks). The leftmost pixel in each pair is
replaced by the average of the two values in the pair and the rightmost pixel is replaced by half of the dif-
ference. For example, given the pair:

A B We would replace its
values with the values:

(A + B)/2 (A - B)/2

Rather than leave the transformed values next to one another, the wavelet transformation moves all of the
averages toward the left side of the image and all of the differences to the right. Thus, if a single row of
an image that was eight pixels wide contained the values:

A B C D E F G H

then after the transformation was complete the values stored in the row would be:

(A+B)/2 (C+D)/2 (E+F)/2 (G+H)/2 (A-B)/2 (C-D)/2 (E-F)/2 (G-H)/2

Of course, if an image’s width is odd, there will be one pixel that has no partner to form a pair with. We
will handle this by simply placing the value of the last pixel in such a row between the averages and the
differences. That is, given a row like:

CS 134 Spring 2007

4

A B C D E F G H I

the wavelet simplifier will produce the transformed row:

(A+B)/2 (C+D)/2 (E+F)/2 (G+H)/2 I (A-B)/2 (C-D)/2 (E-F)/2 (G-H)/2

The resulting image will look like a horizontally
contracted copy of the original with a similarly
sized dark region to its right. The result of ap-
plying this transformation to the image we have
been using as our example is shown on the right.
If you look carefully, you can see that the dark
rectangle actually contains bright regions that
correspond to the edges of objects in the original
image. The edges are where the differences be-
tween adjacent pixels tend to be largest.

The procedure for restoring the original image
given the values produced by the wavelet trans-
formation is simple. If the initial values of two
adjacent pixels were A and B, then the values
stored for these pixels in the transformed image
will be E = (A+B)/2 and F = (A-B)/2. If you
evaluate the expression E + F, the result will be
the value of A. If you evaluate E - F, the result
will be B.

Actually, while our claims about E, F, A, and B are true in normal mathematics, in Java, things won’t
quite work out. Since we will be working with integer values, when we compute (A+B)/2, Java will
throw away any remainder from the division. As a result, E + F and E - F will only produce close ap-
proximations of A and B. Wavelet simplification is therefore another example of a lossy approach.

Your implementation of wavelet will mimic our RangeSimplifier1 much like your implementation of
waterfall.

Recursive Wavelet
If you look at the sample image shown above to
illustrate the result of applying the wavelet trans-
formation, you should notice that while it is a bit
squished, the left half of that image looks a lot
like a normal picture. Wavelet is a transforma-
tion designed to process pictures. Suppose we
applied it again to just the left half of the image
shown above. The result would look like the
image on the right. The left quarter of the image
is a very compressed version of the original. The
right half of the image is the difference values
from the original image. The dark quarter be-
tween these two is a collection of difference val-
ues from the first compressed version of the im-
age. As such, it is very close to a compressed

CS 134 Spring 2007

5

version of the right half of the image.

One thing is obvious. More of the pixels in this image are nearly black. Therefore, it will have even a
bigger peak in its histogram and should compress better. Of course, if it is good to apply wavelet twice, it
must be better to do it three times, or four, or...

The third technique we would like you to implement is a recursive version of wavelet. It will begin by
applying the simple version of wavelet described above to an image. Then, if the original image is wider
than two pixels, it should extract the left half of the result as a new image and recursively apply itself to
the result. Finally, it should paste the result of this recursive call back into the left half of the image from
which it extracted the left half.

While you have written recursive code before, the implementation of this simplification process will illus-
trate a slightly different from of recursion. There will be no recursive class involved. That is, you won’t
define a class that has an instance variable that refers to another instance of the same class. Instead, you
will simply define an image processing method within a class that invokes itself on a smaller image. As a
result, there will also be no empty boolean to tell you when to stop recursing. Instead, as suggested
above, this recursive process will terminate when the image has been reduced to a single column.

You should now recognize the purpose of one of the ImageFilters we had you use last week. The Pas-
ter filter is just the tool you need to insert the result of the recursive application of the wavelet algorithm
back in as the left half of the final image to be returned. In addition, as part of the implementation of this
algorithm, you should implement a CopyLeft filter that extracts the left half of an image as an independ-
ent SImage. The definition of “half” here is critical. If an image’s width is 2N, then the width of a half is
obviously N. If the width is 2N+1, then your filter much return a “half” whose width is N+1.

Once these filters are written, it will be possible to implement the recursive wavelet class much more con-
cisely than the waterfall and non-recursive filters. Rather than working with pixel arrays, you should be
able to describe all of the steps of the process directly in terms of SImages. First you will simplify an
SImage. Then you will apply a filter to extract the left half of an SImage. Then you will recursively
simplify the half image, and so on. As a result, rather than mimicking our RangeSimplifier1 class as
you did in your earlier simplifiers, you should imitate the implementation of our RangeSimplifier2
when you write a class to implement the recursive wavelet transformation.

The Kitchen Sink
Well, if waterfall is good and wavelet is good, what if we did both? We deliberately described wavelet
working top to bottom and waterfall working left to right so that this would be possible. For your last
simplifier, implement a class that first applies the recursive wavelet transformation to an image and then
applies wavelet to the result. When you are all done, all but one pixel in the result will be a difference
value. To reverse the process, simply apply the reversing transformations in the opposite order. That is,
first apply the waterfall unsimplifier and then the wavelet unsimplifier.

Huffman Code Size Computation
This week’s homework focuses on computing the cost of a Huffman code without actually building the
Huffman tree. In particular, we describe an algorithm that returns the total size (in bits) of the encoded
document. In the case of this lab our document is an image and our encoded document is a compressed
image. We would like you to develop a small variant of the algorithm in the homework. Instead of com-
puting the number of bits in the compressed image, we would like you to compute the average number of
bits per pixel in the compressed image. In other words, just divide the total number of bits in the com-
pressed image by the number of pixels. Call this new method huffmanSize.

CS 134 Spring 2007

6

Seeing double
Until now, all the division we’ve performed has been integer division; we always drop the remainder.
However, when computing the average number of bits per pixel, we care about the remainder. In fact,
we’d like to display the average bits per pixel as is conventional --- with a decimal point. To do this,
we’ll use a primitive type in Java called double. The double type represents (as best it can) a real num-
ber. For example,

double half = 5.0/2.0;

mens half now has value 2.5. To convert from integers to doubles, one has to cast the integer to a dou-
ble and then divide. For example, suppose x has type int and value 5. Then the following would assign
2.5 to the double half

double half = (double) x / 2;

Notice that even though the constant 2 is an integer, the resulting type is a double. When dividing inte-
gers and doubles, Java always converts the integer to a double. As a result, we could have written the di-
vision without doing the cast by initially writing 2 as 2.0.

double half = x / 2.0;

Back to Histograms
An appropriate place to add the huffmanSize method is the Histogram class. This is because the array
storing the number of pixels for each of the 256 brightness values is exactly the input to Huffman’s algo-
rithm --- a set of weights or counts. To implement the algorithm, you’ll want to do the following:

• Copy all of the non-zero entries in the histogram array into a new weights array. The weights array
should be created to have the same size as the histogram array.

• Because computing the Huffman cost involves working with decreasingly smaller lists of weights, we
will maintain a variable called distinct that reflects the current length of our array of weights. Why
do this? Isn’t it the case that weights has its own length member variable? That’s true, but it will be-
come clear in the next few bullets.

• Computing the Huffman cost involves both finding the position of and extracting a minimum value
from an array of weights. It’s easy to find the position of a minimum value, but to extract the mini-
mum, you’ll need to use a little trick. Suppose your weight array contains 10 weights (i.e., the value of
distinct is 10) and the minimum weight appears at index 3. The idea is to move the last weight at
index 9 to index 3 and then later decrement distinct. This means the array still has its original
length, but you can simulate shrinking the array size by using distinct as the simulated length in
your iteration steps.

• Call the new methods from above findMin and extractMin respectively. findMin takes an array of
integers weights and the integer distinct and returns the index of a minimum value in weights.
extractMin takes an array of integers weights, and the integer distinct and returns an integer rep-
resenting the minimum weight. extractMin calls findMin as a subroutine. In addition, extract-
Min performs the little trick above. Notice that extractMin does not itself decrement distinct ---
you’ll have to do that yourself after calling extractMin.

• huffmanSize should compute the Huffman cost by repeatedly calling extractMin until only a single
weight remains in the array of weights. As should be clear by now, huffmanSize returns a double.

Using the Starter Project
We want you to incorporate your implementations of the simplification algorithms described above into a
program that will allow you to compare their behavior by systematically applying the algorithms to a va-
riety of images. The interface for this program will resemble the interface of the program you wrote last

CS 134 Spring 2007

7

week in many ways. Therefore, rather than having you repeat much of the work you did last week by
writing the code to implement the interface from scratch, we will provide a starter file containing all of
the code needed for the interface, together with several of the image filter classes you used or imple-
mented last week. To prepare you to work with our starter project, we will first describe the interface the
program provides. Then, we will provide a brief tour of the classes included in the starter project.

Overview of the Program’s User Interface
The the main class is in the program provided in this week’s starter project is named DualImageViewer
just like the class you defined last week. When you create a new instance of this class, it will display a
window very similar
to last week’s pro-
gram. The window
will provide room to
display two images
side by side, but it
won’t provide quite
as many controls for
modifying the im-
ages as last week.
The sliders are gone.
Instead of having a
separate “Load But-
ton” image for each
half of the window,
there will only be
one button that will
load a new image
into the left side of
the window.

Although the “Show Histogram” button is still included it will work a bit differently. When you press this
button it will display a window containing separate histograms for the red, green, and blue components of
the image as shown below. In addition, below each histogram the program will display the bits required
per pixel to encode the corresponding pixel array using a Huffman code.

 (Well.... Actually, while we will provide the code to display the three histograms and the bits per pixel,
you will have to write the code to calculate the number of bits required per pixel.)

The buttons to copy or paste images from the left side to the right will be replaced by a button that will
apply a simplification algorithm to the image on the left. In addition, there is a menu in the lower right
corner of the window that can be used to select the simplification algorithm that you wish to apply. The

CS 134 Spring 2007

8

image shown above shows a menu that includes all of the algorithms we want you to compare. The ver-
sion of the program provided in the starter project will only include the “Range Reducer” algorithm in the
menu. You need to implement and add the others.

When the “Simplify/Unsimplify” button is pressed, the pro-
gram will display two new images. It will create a new win-
dow like the one shown on the right containing the “simpli-
fied” version of the original image. In this case, we applied
the recursive wavelet algorithm, so you may be able to see a
series of increasing narrow drawings of the edges of the ob-
jects in the original image in the simplified version.

The program will also display the result of reversing the proc-
ess by “unsimplifying” the simplified image on the right-hand
side of the main window as shown below. With this particular
image, it will probably be difficult for you to see any differ-
ences between the images in the sample window below, but
since the algorithm is lossy, with some example images there
will be noticeable “artifacts”.

Note that the window in which the simplified image is displayed contains its own “Show Histogram” but-
ton. Pressing this button provides a way to see how effective the algorithm has been. In particular, it
provides a way to determine how many bits/pixel are required to encode the simplified representation of
the image. A sample of the histograms for the simplified image shown above is shown below.

CS 134 Spring 2007

9

Classes Provided
Image Filter Classes:

We provide all but one of the class you will use for filtering SImage objects.

• ImageFilter
• Expander
• Paster
• Scaler
• Differencer

Most of these are identical to the ones you implemented or received last week --- we’re just giving you
our versions. The only new filter provided is Scalar. It rescales the pixel values of an SImage by mul-
tiplying them by some rational number. As an example, RangeSimplifier2 uses Scalar to scale the
brightness bands of an image down for compression and then scale the brightness bands up (i.e. expand
the brightness bands) during decompression.

Histogram Classes:

Histogram and DisplayHistorgams are the same as last week except that DisplayHistograms
now displays three histogram images --- one for each color band --- along with the average bits per pixel
when the data that generates such a histogram is compressed using Huffman’s algorithm. You will need
to add code to Histogram to compute the compressed image cost.

Image Simplifier Classes:

• ImageSimplifier is the base class of all simplifiers.
• RangeSimplifier1 implements a very basic simplifier that decreases the bands of brightness avail-

able to an image. As you might expect, this results in some compression. The basic range simplifier
also decompresses the image by expanding the range back out.

• RangeSimplifier2 is identical in functionality to RangeSimplifier1 except it uses Scaler to
decrease the bands of brightness when compressing and expand the range of brightness when decom-
pressing. This is a good example of how your recursive wavelet simplifier might look.

GUI Interface Classes:

ImageViewer and DualImageViewer are similar to the classes with the same names from last week’s
implementation, but the layout has changed slightly. You should read through these classes and note the
changes. You should not need to change ImageViewer at all during the lab. The only change you will
make to DualImageViewer is to add additional entries to its menu of simplification techniques as you im-
plement them. All you will have to do to add a new entry to this menu is add a line of the form

CS 134 Spring 2007

10

 addSimplifier(name-of-simplification-technique, simplifier);

to the DualImageViewer constructor. For example, the line we have included in the constructor to place
our range simplifier in the menu looks like:

addSimplifier("Range Simplifier", new RangeSimplifier1(32));

The addSimplifier method both adds an entry to the menu and places the ImageSimplifier pro-
vided in a collection of simplifiers implemented using a recursively defined class named Simplifi-
erList. When a new menu item is selected, our code searches this list to determine which simplifier
should be applied.

Getting Started
Download the starter file Lab9Starter.zip from the course website
http://www.cs.williams.edu/~cs134/s07/labs and unpack it in your Documents folder.

Report and Experiments
In addition to the source code for a working program, you will also submit a written lab report. This lab
report need not be long (1-2 pages will be sufficient if you are concise), however it needs to be clear and
address the questions listed in this section. As with any piece of writing, you should use clear formatting
and follow normal English grammar and spelling. However, this is not great literature--you can use re-
petitive sentence structure, have minimal transitions between sections, and use footnotes to clarify your
points.

Because this is a technical document, it is important to be precise, using mathematics, data tables, and
diagrams to support your claims. It is also important to be objective. In arguing the merits of one com-
pression method over another you must stick strictly to the facts. However, you are welcome to speculate
as long as your speculation is clearly delineated and follows a clear line of reasoning.

The centerpiece of the report will be your data table. It should list the compression ratios that you ob-
served for each method on each image found in the Compression folder of the AllImages folder, the
relative complexity of each method, and the subjective quality of the compressed image. Note any arti-
facts (distortions) that you observe in the compressed images. You are invited but not required to con-
struct your own test images that may reveal weaknesses and strengths of the algorithms.

Specifically address the following questions and topics in the report:

• Which algorithm is best?

• Describe other test images that would be good for testing the properties and limitations of simplification
algorithms.

• What constants are used in the algorithms that affect the quality and efficiency?

• What kinds of images compress well? What kinds of images compress poorly?

• Sketch out a new image simplification algorithms (you don’t have to write code; just describe an idea).
How do you think this will perform compared to the ones you experimented on?

Even if you are unable to complete the code for the lab (or have a few errors left), you should still submit
the report. In this case, either discuss only the algorithms that you completed, or borrow a friend’s com-
pleted implementation.

CS 134 Spring 2007

11

http://www.cs.williams.edu/~cs134/s07/labs
http://www.cs.williams.edu/~cs134/s07/labs

Submitting Your Work
As usual, make sure you include your name and lab section in a comment in each class definition. Find
the folder for your project. Its names should be something like FloydLab7.

• Click on the Desktop, then go to the “Go” menu and “Connect to Server.”
• Type “cortland” in for the Server Address and click “Connect.”
• Select Guest, then click “Connect.”
• Select the volume “Courses” to mount and then click “OK.” (and then click “OK” again)
• A Finder window will appear where you should double-click on “cs134”,
• Drag your project’s folder into either “Dropoff-Monday” or “Dropoff-Tuesday”.

You can submit your work up to 11 p.m. two days after your lab (11 p.m. Wednesday for those in the
Monday Lab, and 11 p.m. Thursday for those in the Tuesday Lab). If you submit and later discover that
your submission was flawed, you can submit again. The Mac will not let you submit again unless you
change the name of your folder slightly. Just add something to the folder name (like the word “revised”)
and the re-submission will work fine.

Grading
Completeness (14 points) / Correctness (6 points)

• Image simplifier algorithms are correctly implemented
• Simplifying / Unsimpliying an image creates a new compressed image in a new image viewer and

displays the uncompressed image in the right image viewer
• Histograms are properly displayed for each of the three color bands
• Histograms give the correct bits per pixel for each color band
• The huffmanSize method is correctly implemented

Style (10 points)
• Commenting
• Good variable names
• Good, consistent formatting
• Correct use of instance variables and local variables
• Good use of blank lines
• Uses names for constants

CS 134 Spring 2007

12

