
TCP packet
IP

version
Hdr
len

Service
class

Packet
Length

Packet Number Fragment Number

TTL Protocol Error Check

From Addr
To Addr

Source Port Destination Port
Sequence Number

Acknowledgement Number
Hdr Len Flags Receiver Window

Error Check Urgent Pointer
DATA

1684 4

Recall the TCP packet format...

Sequence and Acknowledgment Numbers

Loss Case

Seg. # 1

Ack. # 1

Seg. # 1

Ack. # 1

Seg. # 1

Ack. # 1

Seg. # 2

Ack. # 2

No Loss Case
and the basic idea of using acknowledgment and retransmissions to ensure reliable delivery.

Maintaining Transmission Efficiency
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10
Segment 11
Segment 12

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 8
Ack 9
Ack 10
Ack 11
Ack 12

Since they knew segments would overlap on the wire, the designers of TCP did something tricky.

Acknowledgments are cumulative. Whenever a packet arrives, the receiver sends an acknowledgment containing
the number of the last packet (actally byte) that was received “in order”. That is, if the sender sees Ack 12, it
knows that segments 1-12 all got through Ok.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 7

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 7

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 7
Ack 7

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10
Segment 11
Segment 12

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 7
Ack 7
Ack 7
Ack 7

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10
Segment 11
Segment 12

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 7
Ack 7
Ack 7
Ack 7

Segment 8

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10
Segment 11
Segment 12

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 7
Ack 7
Ack 7
Ack 7

Segment 8

Ack 12

This means that if one packet of a sequence gets lost in transit, the receiver will respond to each packet that
arrives after the lost packet by acknowledging the last message received before the loss. It also means that the
sender may not receive an acknowledgment for every packet sent. When a lost packet is retransmitted,
completing a sequence of packets, the receiver can acknowledge the receipt of the entire sequence by sending an
acknowledgment for the last packet.

Cumulative Acknowledgments
Segment 1
Segment 2
Segment 3
Segment 4
Segment 5
Segment 6
Segment 7
Segment 8
Segment 9
Segment 10
Segment 11
Segment 12

Ack 1
Ack 2
Ack 3
Ack 4
Ack 5
Ack 6
Ack 7
Ack 8
Ack 9
Ack 10
Ack 11
Ack 12

Cumulative acknowledgments also makes it unnecessary to retransmit lost acknowledgments in some cases. As
long as the acknowledgment that is lost is not for the last packet in a sequence, the cummulative
acknowledgment sent for a later packet will assure the sender that the earlier packet was received.

Slow Segments == Confused Conversations
GET /index.html 1

Ack 1
Contents of index.html 1

Retransmission of
GET /index.html 1

Ack 1
Contents of index.html 1

GET /main.html 1

Ack 1

If every conversation numbers packets starting with #1, it would be easy for packets from two different
connections to become confused.

On the other hand, if every connection started with a random sequence number, how would one know that there
had not been an earlier packet that was missed?

The Connection Start 3-Way Handshake
SYN (seq # = x)

Ack x+1 &
SYN (seq # = y)

Ack y+1

Ack x+2
Contents of index.html

(seq = y+1)

GET /index.html x+1

To avoid having packets from two different connections look the same (i.e., have the same sequence numbers),
choose initial sequence numbers RANDOMLY and send special “start conversation” segments to tell the other side
of the choice.

In an ongoing TCP connection, one cannot really distinguish the sender from the receiver. Both sides are allowed
to send and receive data. Both side need to associate sequence numbers with the packets they send so that the
other side can send appropriate acknowledgments. Therefore, both sides pick a random inital sequence number,
both sides send this number in a special packet called a SYN, and both sides send acknowledments of the receipt
of these special SYN packets before actual data transmission can begin.

TCP Segment Format

16 16
Source Port Destination Port

Sequence (Segment) Number
Acknowledgment Number

Hdr Len Flags Receiver window
Error Check Urgent Pointer

DATA

The Flags field of the TCP packet is used to distinguish special packets like the starting SYN packets.

Flags
(nothing) Here’s some data

SYN Connect

FIN Disconnect

ACK I got segment #__

RESET I’m confused and want to
hang up

URG By the way, ...

PUSH Send data now
The Flags field is also used to indicate a) whether a packet contains an acknowledgment (they almost all do), b)
whether the sender would like to terminate the connection normally (FIN), c) whether the sender would like to
terminate the connection abnormally (RESET).

Connection Termination
FIN (seq # = z)

Ack z=1 &
FIN (seq # = W)

Ack W+1

Closing is complicated because both sides are allowed to send data. Closing one side means that that side has
nothing more to send...but there might still be more data to receive! Therefore, each side has to send its own FIN
packet (and acknowledge receipt of a FIN from the other side).

Let’s use TCPCapture to actually see what happens at the application level and at the TCP level when two
programs try to communicate using HTTP

