CS 434 Meeting 28— 4/24/02

Announcements
1. Midterm available today through next Tuesday

Value Numbering (cont.)

1. Last time I explained a procedure for identifying subexpressions
that are guaranteed to produce the same value at runtime.

e Develop a scheme to associate a distinct number with each
possibly distinct value produced during the evaluation of a
series of subexpressions.

e Store the value number for values associated with variables
in their declaration descriptors.

— Initialize each variables value number to “undefined”.

— When a variable is used for the first time, associate it
with some previously unused value number (i.e. store
the value number in the variable’s declaration descrip-
tor).

— When an assignment statement is processed store the
value number associated with the right hand side in the
variable’s descriptor.

e Store the value numbers associated with other expression
nodes in the tree in a hash table.

— For nodes rooted at operator nodes, the hash key will
be composed of the operator and the value numbers of
the operands.

— For constant nodes, the hash key will be composed of
the node type (i.e. treat Nconst as an operator) and the
value of the constant.

— Don’t add Ncall nodes in the hash table. Each call gets
a new value number.

— If an expression’s key is found in the hash table, use the
associated value number stored in the table.

— If an expression’s key is not found, add an entry for the
key and the next unused value number.

2. This scheme will work fairly well for straight line code containing
nothing but references to simple, local variables. In the real world,
unfortunately, there are a few more complications to deal with.

o [f the target of an assignment is an array, we have to act as
if any of the elements of the array may have changed (If we
encounter afj] after assigning to ali] we may know that i and
j are the same, but we can never be sure they are different).

e If the target of an assignment is a record component, we
either have to work very hard or assume any of the record
variables with such a component may have changed.

3. I had these problems in mind when I had you make each refvar
node point to the variable descriptor associated with the variable
being referenced. In particular, that is why I had you create
dummy nodes for array element variables.

e The dummy variable associated with an array’s elements will
represent all the elements of all arrays of that array type. By
assigning a new value number to this dummy variable, you
can ensure that the value of all future references to any ele-
ment of such an array will be assumed to represent a distinct
value from any earlier references.

e Record components behave similarly. If you see an assign-
ment to a record component, you will change the value num-
ber stored in that component’s declaration descriptor. This
will make your value numbering algorithm treat all future
reference to this component (in any record variable of the
type to which the component belongs) as distinct from ear-
lier references.



4. The handling of array elements and record components is a fine

example of the conservative nature of the analysis algorithms one
uses when performing optimization. Such algorithms do not give
exact information, but they only make “safe” mistakes. In this
case, the algorithm will often fail to identify pairs of expressions
that actually are CSE’s. The result will be that the code gen-
erated will be less efficient (but correct!). On the other hand,
the alternative of sometimes accidentally concluding that two ex-
pressions are CSE’s when they are not is unacceptable. It would
result in the generation of incorrect (though efficient) code.

. While we can’t be sure whether array references like a[i] and alj]
are different, we can sometimes tell when they are the same.

e For refvar nodes, the key will be a quadruple consisting of
the node type (Nrefvar), the value number of the base ad-
dress sub-expression, the value of the displacement field and,
finally, the value number of the variable being referenced.

e When we process an assignment, we assign new value num-
bers to the variable referred to by the refvar and any of its
aliases. We assign the value number of the assignments right
hand side to the refvar node itself.

e Thus, we basically both test that the actual addresses refer-
enced are the same (which can only happen if the subscripts
are equivalent) and that no assignment has changed any el-
ement of the array (or any array of the same type) since
the evaluation of the previous instance of this subscripted
variable (by including the value number of the referenced
variable).

6. BUT WAIT! It get’s worse. We still need to account for assign-

ments involving reference parameters and for the effects of calls.

7. Suppose that a global variable X is passed as a var parameter P

to some procedure. If a value is assigned to X, then the value of

P will change. Similarly, assigning to P will change the value of
X. In such a situation, we say that X and P are aliases of one
another.

. Basically, when we process an assignment to a non-local variable

or a reference parameter it is not enough to change the value
number in the descriptor of the target of the assignment. In
addition, we have to change the value numbers associated with
all variables that might be aliases of the assignment’s target.

e In a simple compiler like ours, we must assume that any
var parameter may be aliased with any non-local variable,
array element, record component or other var parameter.
Basically, it can be aliased with anything other than a local
variable.

— In a compiler that was willing to do some interproce-
dural analysis we might gather information about pa-
rameter passing that would allow us to predict aliasing
relationships.

e We must also assume that any non-local variable, array el-
ement or record component may be aliased with any var
parameter.

Since we can’t be sure that an alias relations exists, we must set
the value numbers of possible aliases of the target of an assignment
to the “unknown” value number rather than to the value number
of the right hand side.

9. Finally, if we find a call, we must:

e change any value numbers assigned to array elements, record
components, or variables declared in or above the level of the
called procedures.

e change any value numbers assigned to variables passed as
var parameters to the procedure or function.



