
CS 434 Meeting 14 — 4/3/06

Anouncements
1. Phase 2.2 (code generation for control structures) should be finished

by the end of the week).

2. About those code labels...

3. Phase 3 (Building a little parser with Yacc) will be assigned on Thurs-
day.

LR Parsing

1. We have discussed how a shift-reduce parser works, now it is time to
learn how to build one.

By way of review:

• As each input symbol is read, a shift-reduce parser either:

– pushes the symbol onto a stack which represents a prefix of
the sentential form the parser believes it is parsing, or

– Pops the handle off of the top of the stack replacing all the
symbols popped by the non-terminal on the left hand side of
the rule used to perform the reduction.

2. In order to know when to shift and when to reduce, a bottom up parser
must be able to determine when it has the handle of a sentential form
sitting on top of its stack.

simple phrase Given a grammar G and a string w = αγβ such that

(a) w,α, γ, β ∈ (Vn ∪ Vt)
∗ ,

(b) w = αγβ

(c) for some U ∈ Vn, U→γ ∈ P and αUβ is a sentential form of
G

we say that γ is a simple phrase of the sentential form w.

handle The leftmost simple phrase of a sentential form is called the
handle.

3. One possible approach to this task is to try to make sure that the
contents of the stack are always some prefix of a sentential form that
may include but does not extend past the handle. We will call such a
prefix a viable prefix.

4. Given that a shift-reduce parser should eventually find a rightmost
derivation for any valid input, we can restrict our attention to handles
of sentential forms that are encountered in rightmost derivations.

5. To get a concrete sense of what such prefixes would look like, consider
the following grammar:

< E > → < E > + < T > | < T >
< T > → a | ( < E > )

and sample rightmost derivation in which we have displayed the handle
of each sentential form in italics:

< E > → < E > + < T >
→ < E > + a
→ < E > + < T > + a
→ < E > + ( < E > ) + a
→ < E > + ( < E > + < T > ) + a
→ < E > + ( < E > + a ) + a
. . .

Any prefix of any sentential from in such a derivation that does not
extend past the handle should be considered a viable prefix.

(a) From the first step we would identify the following strings as viable
prefixes:

ǫ
< E >
< E > +
< E > + < T >

(b) From the second step we would identify:

ǫ
< E >
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< E > +
< E > + a

(c) Note that in this step, only the last item (which includes a part
of the handle) is “new”. This is true in general. So, for example,
from the derivation step:

→ < E > + ( < E > + < T > ) + a

we would only need to identify the following “new” viable prefixes:

< E > + (
< E > + ( < E >
< E > + ( < E > +
< E > + ( < E > + < T >

6. We can turn these ideas into the following formal definition.

Viable prefix Given a grammar G, we say that γ ∈ (Vn ∪ Vt)
∗ is a

viable prefix of G if there exists a rightmost derivation

S
∗

=⇒
rm

αNω=⇒
rm

αβ1β2ω

such that γ = αβ1.

7. One way to understand the intuition behind the definition of a viable
prefix is that something is a viable prefix of a sentential form it it
extends up to but not past the handle..

As long as the prefix of a sentential form of a shift-reduce parser is
a viable prefix for the associated grammar, things are OK (i.e. we
have not yet read past the handle and there is at least some possible
remaining input that could form a valid sentential form and some hope
of finding a rightmost parse of this sentential form).

8. It isn’t clear that identifying viable prefixes is in any way simpler than
the problem of parsing itself. Basically, given the definition above,
one might not expect that the set (i.e. language) of viable prefixes
associated with a context-free grammar is simpler than the language
associated with the grammar. Luckily, it turns out that the set of
viable prefixes associated with a context free grammar forms a regular
language.

We will demonstrate this by explaining how to build a finite state
machine that recognizes the set of viable prefixes of a context free
grammar.

9. Consider the problem of parsing strings using the following grammar:

< S > → a < B > | b < A > | b c
< A > → b
< B > → b | c

• In general, we can’t say whether a ‘b’ or ‘c’ that appears in the
input is a handle or not.

• After reading a b, we know that if the following character is a
‘b’ it is the handle, but that if it is a ‘c’ the pair ‘bc’ forms the
handle. We even know which production to use when we reduce.

• One way to explain how we know what to do after reading a ‘b’ is
that after reading a ‘b’ we know that we are either “in between”
the ‘b’ and the < A > in the production

< S > → b < A >

and therefore also possibly at the beginning of the production

< A > → b

or in between the ‘b’ and the ‘c’ in the production

< S > → b c

10. Our approach to building LR(0) parsers will be based on a notation
for describing “what point in a rule we are up to”. To be precise, we
need the following definitions:

LR(0) item Given a grammar G, we say that

[N→β1.β2]

is an LR(0) item or LR(0) configuration for G if N→β1β2 is a
production in G.

Configuration Set We will refer to a set of LR(0) items as a config-
uration set.
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For example, the configuration set:

< S > → b . < A >
< S > → b . c
< A > → . b

describes where we might be in various productions after reading a ‘b’
while parsing relative to the grammar discussed above.

11. Our intuition concerning how an LR(0) item describes “where we are”
is made precise by the definition:

Valid item Given a grammar G, we say that an LR(0) item,
[N→β1.β2], is valid for γ ∈ (Vn ∪ Vt)

∗ if there is a rightmost
derivation

S
∗

=⇒
rm

αNω=⇒
rm

αβ1β2ω

such that αβ1 = γ.

12. It should be clear that there is some connection between the definitions
of valid items and viable prefixes. The connections are:

• If any LR(0) item is valid for a string γ then γ must be a viable
prefix.

• If some string γ is a viable prefix, then there must be some LR(0)
item that is valid for γ.

13. Since a string is a viable prefix if and only if the set of LR(0) items for
the string is non-empty, building a machine that keeps track of the set
of valid LR(0) items as it reads input will enable us to identify viable
prefixes.

• Once such a machine starts telling us there are no valid items we
will know that we are no longer looking at a viable prefix we will
know that we either have reached the end of the handle or hit an
error.

14. Imagine what such a machine would look like for our trivial grammar:

< S > → a < B > | b < A > | b c
< A > → b
< B > → b | c

• The initial state would have to correspond to all LR(0) items valid
for the null string:

[ < S > → . a < B > ]
[ < S > → . b < A > ]
[ < S > → . b c ]

• From this state, there should be a transition on input a to the
state corresponding to the configuration set:

[ < S > → a . < B > ]
[ < B > → . b ]
[ < B > → . c ]

• and so on ...

A Quick Review of Finite Automata

1. To make all this precise (and eventually prove that it works) we may
need to refresh your knowledge of finite automata a bit.

2. First, recall the structure of a deterministic finite state machine.

(a) A finite set of states, π.

(b) An input alphabet, Σ.

(c) A transition function δ : π x Σ → π.

(d) A subset F of π called the set of final states.

(e) An element π0 of π called the initial state.

3. While you are at it, recall (or at least note) that we can explain the
behavior of a deterministic finite state machine by defining a function
that extends δ to strings over the input alphabet. In particular, we
can define ∆ : π x Σ∗ → π recursively as

• ∆(π, ǫ) = π
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• ∆(π, γx) = δ(∆(π, γ), x)

and then state that the language accepted by the machine is

{γ ∈ Σ∗ | ∆(π0, γ) ∈ F}

Constructing the LR(0) Machine for a Grammar

1. Now, we can give a general definition of the LR(0) machine for an
arbitrary grammar G.

Of course, we need a few more definitions:

goto Given a set of LR(0) items for a grammar G, we define

goto(π, x) = {[N→β1x.β2] | [N→β1.xβ2] ∈ π}

closure Given a set π of LR(0) items for a grammar G with produc-
tions P, we define closure(π) to be the smallest set of LR(0) items
such that:

(a) closure(π) ⊇ π

(b) if [N1→β1.N2β2] ∈ closure(π) and N2→β3 ∈
P then[N2→ . β3] ∈ closure(π)

2. The closure of a set of LR(0) items can be computed using a simple
(but important) little algorithm

• An algorithm to compute closure( π )

(a) set π′ equal to π.

(b) while there is some [N→β1.Mβ2] ∈ π′ such that M→β3 ∈ P
and [M→.β3] /∈ π′ add [M→.β3] to π′.

3. With these definitions and the assumption that the start symbol S of
G is replaced by a new start symbol S′ and that the rule S′→S$ is
added to the set of productions (The $ just stands for end-of-input).
The definition of the LR(0) machine is:

• Let the set π of states of the machine be the set of all sets of
LR(0) items for G.

• Let the set of final states be all states except the state correspond-
ing to the empty set of LR(0) item.

• Let the initial state be the state corresponding to the set

closure({[S′→.S$]})

• Let the transition function δ : π x (Vn ∪ Vt) → π be defined by:

δ(π, x) = closure(goto(π, x))

4. A somewhat interesting example.

< S‘ > → < S > $
< S > → < S > a < S > b | c

S c

c
a

Sa

# 1

# 2
# 3

# 5

# 6

# 4

# 7

S’ -->. S $

S --> . S a S b

S --> . c

S’ --> S . $

S -->  S . a Sb

S’ -->  S $ . S --> S a . S b

S --> . c

S -->  . S a S b

S --> S a S . b

S --> S . a S b S -->  S a S b .

$

S -->  c .
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