
CS 361 Meeting 9 — 2/28/20

Announcements
1. Homework 3 due today.

2. Homework 4 available soon.

3. Click on the footnote at the bottom left of this page to see the slides
used in class.

Not Regular 6= Irregular

1. In our last meeting, we obtained two different regular expressions by
performing two different sequences of state eliminations to convert a
DFA for the language of binary number divisible by 3 to a 2-state
GNFA. Eliminating 2 then 1 then 0 and m gave us:

(0 ∪ (1(01∗0)∗1))(0 ∪ (1(01∗0)∗1))∗

Eliminating 1 then 2 then 0 and m gave us:

(0 ∪ 11 ∪ 10(1 ∪ 00)∗01)(0 ∪ 11 ∪ 10(1 ∪ 00)∗01)∗

Hopefully, these two regular expressions describe the same sets!

2. I suggested that it would be nice to have some sort of “regular expres-
sion checker” that would tell us for sure that two regular expressions
like this actually do describe the same languages.

3. If you think about it, you will realize that what I really wanted is a
decider for the language:

LEQ−RE =
{e = e′ | e & e′ are regular expressions over Σ and L(e) = L(e′)}

4. This language is a bit more interesting than most of the examples
we have been talking about so far this semester. Certainly, it would
be harder for you to write a program that decided whether an input
belonged to this language than it would be to decide if a binary string
represented a number divisible by 3.

Click here to view the slides for this class

5. In fact, one of our goals for today will be to show that

LEQ−RE = {e = e′ | e& e′ are regular expressions over Σ and L(e) = L(e′)}

is not regular.1

6. To learn how to accomplish this, let’s start with something easier. In
your last homework assignment I mentioned that {a+ b = c | a, b, c ∈
{0, 1}∗ and the sum of the numbers represented by a and b in binary
notation is the number represented by c } was not regular. Let’s con-
sider an even simpler representation of addition:

{a + b = c | a, b, c ∈ {1}∗ and the sum of the numbers
represented by a and b in unary notation is the number rep-
resented by c }

7. That is, we would like to determine whether the language

LUnaryAdd = {1a + 1b = 1c|1k refers to a string of k 1s and a+ b = c}

is regular.

Getting Loopy

1. One approach to showing that a particular language is not regular
involves recognizing that strings of sufficient length will encounter loops
of states as they are processed by a DFA. I want to make this notion
very concrete for you before using it in a more abstract way to show
languages are not regular.

• Last time we explored a number of loops that exist in the state
diagram of a DFA that recognizes binary numbers divisible by 5.

1Note: It is standard to say a language is “not regular” rather than “irregular.” If
you use the term “irregular” I may snicker.

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect9slides.pdf

ϵ 1100

1

0

1

0 2

3 4

1

1

0

1

0

1

0

10

• We found examples of loops of strings that led the machine
through loops of length 1 to 4, but nothing longer:

input path

00 ε→ 0→ 0

11001 ε→ 1→ 3→ 1→ 0

101101 ε→ 1→ 2→ 0→ 1→ 2→ 0

1111101 ε→ 1→ 3→ 2→ 0→ 1→ 2→ 0

• The interesting thing about the sorts of loops in the state diagram
we have been looking at is that they correspond to substrings in
the input that can be repeated (or omitted) without changing the
final state of the corresponding path. This means from each of
our examples, we can generate an infinite set of inputs that lead
to the same final state by just “starring” the input subsequence
that leads the machine through the loop. The following table
show how this would be done for the examples discussed above.

input related strings

00 00∗

11001 1(10)∗01

101101 1(011)∗01

1111101 1(1111)∗01

• An alternate question we can ask about this machine is if there
are inputs of various lengths that would cause the machine to visit
states without encountering any loop (i.e., any repeated states).

• Here are some examples:

input path

0 ε→ 1

11 ε→ 1→ 3

111 ε→ 1→ 3→ 2

1111 ε→ 1→ 3→ 2→ 0

01110 ε→ 0→ 1→ 3→ 2→ 0

• Note that the last example visits every state in the machine. That
means that any longer input sequence must visit more states than
there are in the machine. Thus, for 6, 7 and any larger length
inputs, a loop in the states must occur.

Addition is too Hard to be Regular

1. I suggested that to make progress on thinking about how to show a
language was not regular it would be best to start with a language that
was very simple:

LUnaryAdd = {1a + 1b = 1c|1k refers to a string of k 1s and a+ b = c}

2. We just saw that if a DFA has n states then it must encounter a loop
in its state graph when processing any input of length greater than N .
We can use this property to see that LUnaryAdd is not regular.

3. If this language were regular, then there would be some DFA M such
that LUnaryAdd = L(M). if M = (Q,Σ, δ, s, F), and n = |Q| then the
input 12n + 1 = 12n+1:

a) must lead to a final state in M , and

b) must lead M through at least one cycle in its set of states (since
its length requires more states be visited than there are distinct
states) before the machine even reaches the plus sign.

2

4. In case the notation 12n + 1 = 12n+1 isn’t sufficiently illuminating, we
can show the structure of the input we have in mind as:

input 111 . . . 1111 +1 = 111 . . . 1111

length 2n 3 2n+ 1

5. The “cloudy” diagram below gives some names to the “dimensions” of
the loop we know the machine must encounter. In particular we are
assuming that the first loop begins after k 1’s have been read and that
it is completed after l steps implying that the number of 1s in the input
that drive the machine around the loop is l − k > 0.

S F2

F1

1k
12n-l+1=12n+1

1l-k

6. This suggests another way we can partition the input:

input 11 . . . 11 11 . . . 11 11 . . . 11 +1 = 111 . . . 111

length k l − k 2n− l 3 2n+ 1

7. Now, the key observation is that since the string of l−k ones leads the
machine M through a loop, we can describe an infinite set of strings
that must belong to L(M) by “starring” this sequence of 1’s.

input 11 . . . 11 (11. . . 11)∗ 11 . . . 11 +1 = 111 . . . 111

length k l − k 2n− l 3 2n+ 1

8. Since the closure (*) means we can either repeat or delete (i.e., repeat
0 times) a substring, this would allow us to conclude that the string

input 11 . . . 11 11 . . . 11 +1 = 111 . . . 111

length k 2n− l 3 2n+ 1

which is just

input 11 . . . 11 +1 = 111 . . . 111

length 2n− (l − k) 3 2n+ 1

which is 12n−(l−k) + 1 = 12n+1 ∈ L(M). This, however, should only be
true if 2n− (l− k) + 1 = 2n+ 1 which would imply l− k = 0 contrary
to our conclusion that there must be a cycle of length 1 or greater in
the path followed processing a string longer than the number of states
in the machine M .

9. This contradiction allows us to conclude that our assumption that
L(M) = LUnaryAdd was false, so LUnaryAdd must not be regular.

The Pumping Lemma (for regular languages)

1. We can generalize the partitioning we performed on 12n + 1 = 12n+1

in a way that leads to an understanding of a more general result that
can be used to show that certain languages are not regular.

• The key to our discussion of 12n + 1 = 12n+1 was the subsequence
of 1s in 12n that could be repeated. That is, there were really
three key parts to our partition as shown below:

input 11 . . . 11 (11 . . . 11)∗ 11 . . . 11 + 1 = 111 . . . 111

length k l − k 4n− l + 4

• Better yet, rather than counting all the digits so carefully, we can
just name subparts as in:

input 11 . . . 11 (11 . . . 11)∗ 11 . . . 11 + 1 = 111 . . . 111

name x y z

3

• Now, we can summarize the logic behind our argument by saying
that for any string w that is long enough, we must be able to
write w = xyz in such a way that y corresponds to a string that
leads M through a loop and therefore, it must be the case that
xy∗z ⊂ L (or equivalently xyiz ∈ L, i ≥ 0).

2. This generalization of our approach to LUnaryAdd is encapsulated in
the FAMOUS Pumping Lemma:

Lemma: Suppose L is a regular language. Then there exists
a positive integer p such that any string s ∈ L with length
at least p may be partitioned into s = xyz where

(a) |y| > 0

(b) |xy| ≤ p
(c) xyiz ∈ L, for all i ≥ 0.

3. It may at times be useful to use a slightly different statement of this
result:

Lemma: Suppose L is a regular language. Then there exists
a positive integer p such that any string s ∈ L with length
at least p may be partitioned into s = xyz where

(a) |y| > 0

(b) |xy| ≤ p
(c) xy∗z ⊂ L.

4. The proof of this lemma is in the text. For not, we will just assume
the lemma is true and work to make sure we know how to use it to
show that languages are not regular.

Pumping Iron

1. I started with unary addition because I had previously mentioned that
at least one language encoding addition (binary addition) was not reg-
ular in a homework assignment.

2. As our first exercise with the Pumping Lemma, let’s consider an even
simpler language.

3. Let’s show that LEQ = {1n = 1n | n ≥ 0} is not regular.

• Using the Pumping Lemma, all we need to do is given a possible
p for this language, show how to find a string that cannot be
pumped (i.e., a string that turns into strings that don’t belong in
LEQ when pumped).

• Consider 1p = 1p.

• The pumping lemma requires that we be able to remove or dupli-
cate some substring y which is non-empty (|y| > 0) that appears
within the first p symbols (|xy| ≤ p) of 1p = 1p.

• Any prefix xy of 1p = 1p of length at most p must contain only
1s. So, x = 1k and y = 1l for some l and k such that l > 0 and
l + k ≤ p.
• The Pumping lemma allows us to conclude that if LEQ is regular

all strings of the form 1k(1l)∗1p−(l+k) = 1p ∈ LEQ. However,
1k1p−(l+k) = 1p /∈ LEQ.

• Therefore, LEQ must not be regulsr!

4. This brings us back to the example I started with to remind you that
decision problems can be interesting.

LEQ−RE =
{e = e′ | e & e′ are regular expressions over Σ and L(e) = L(e′)}

• At first this may seem like a very complicated example.

• Remember, however, that {1n = 1n | n ≥ 0} ⊂ LEQ−RE .

• Using closure properties, we can often focus on such a sub-
language to prove a language that contains it is not regular.

• In this case, consider the language 1∗ = 1∗ (which is clearly regular
since we used a regular expression to describe it).

• The intersection of LEQ−RE with 1∗ = 1∗ is just LEQ.

• If LEQ−RE was regular, then since regular languages are closed
under intersection, LEQ would have to be regular.

• We just showed, however, that LEQ is not regular.

4

• So, LEQ−RE must not be regular.

• The lesson is that you should not work too hard. You can often
avoid the complication of an argument involving the Pumping
Lemma by taking advantage of closure properties.

Thinking Negative Thoughts

1. One odd thing about the Pumping Lemma is that we almost never
encounter an example where we use it in a positive sense. That is,
instead of saying, “Yay! We know this language is regular so it must
satisfy the Pumping Lemma,” we almost always use it in proof’s by
contradiction where we instead say “Yikes! This language does not
satisfy the Pumping Lemma so it must not be regular.”2

2. As a result, while it is common to state the Lemma’s conditions posi-
tively, we will normally be trying to establish that the negation of its
conditions are true. So, it is worth carefully considering/understanding
what happens when we negate its conditions.

• The Pumping Lemma can be restated (and reformatted) just
slightly to read:

Lemma: Suppose L is a regular language. Then
there exists a positive integer p such that
for all string s ∈ L with length at least p
there exists a partition s = xyz where

(a) |y| > 0

(b) |xy| ≤ p, such that

for all i ≥ 0, xyiz ∈ L.

• The point of this reformatting is to emphasize that the statement
of the lemma involves four “quantifiers”. Two of the quantifiers
are “for alls” and two of the quantifiers are “there exists”.

2It is worth noting here, although I hope to emphasize this later, that the Pumping
Lemma is not an “if and only if” result. As a result, we never use the Pumping Lemma
to arrive at the conclusion “Yay! This language satisfies the Pumping Lemma so it must
be regular.” In fact, there are languages that satisfy the Pumping Lemma but are not
regular.

• In mathematical logic, the symbol ∀ is used for “for all” and ∃
is use for “there exists”. Therefore, a very abbreviated (actually
slightly incomplete) form of the Pumping Lemma would be

∃p∀s∃xyz∀ixyiz ∈ L

• To negate a quantified statement you reverse the quantifier (“for
all” become “there exists” and vice versa” and negate the state-
ment that the quantifier was applied to.

Applied to the Pumping Lemma this becomes would be

∀p∃s∀xyz∃ixyiz /∈ L

• Restated in English we can say that to show that L is not regular
you must show that

– for every sufficiently large p

– there exists a string s ∈ L of length ≥ p such that

– for every possible partition of s = xyz where

(a) |y| > 0

(b) |xy| ≤ p
– there exists i ≥ 0, such that xyiz /∈ L.

• This restatement reveals three things you need to recognize to use
the Pumping Lemma effectively.

– You cannot assume anything about the size of p.

As a result, rather than looking at specific strings,
we look for patterns (like 1p = 1p ∈ LEQ−RE rather
than 1967 = 1967).

– You only need to find one string you cannot pump!

This is a blessing and a curse. It would clearly be
more work if you had to show that every string cannot
be pumped. In general, however, a language that is
not regular may contain many strings that can be
pumped so finding a pattern that cannot be pumped
may feel like looking for the proverbial needle in a
haystack.

5

– You need to explore every possible way of partitioning strings
matching your pattern.

This is definitely bad news. It can be difficult to be
sure you have covered every possibility.

– You only have to find a single value of i that doesn’t work.

In the easy examples we have considered, almost all
values of i don’t work. Things actually can be tricky
if there is only one value of i that doesn’t work and
you have to find it.

– The pumped string xyiz must not be in the language.

It isn’t enough to show that the pumped string is no
longer of the pattern you were thinking of.

3. As a simple illustration of these ideas, consider the language:

LBinary−addition = {a+ b = c|a, b, c ∈ {0, 1}∗, v(a) + v(b) = v(c)}

where v(x) = the value of x interpreted as a binary number.

• At first this probably seems like it will be harder than the unary
addition example because binary place notation just seems more
complicated that unary which depends only on the length of
strings not their content.

• Recall, however, that we don’t have to show that it is impossible to
pump all strings (in fact, this is unlikely to be true). We only have
to show that one pattern (including strings of arbitrary length
since we don’t know how big p might be) cannot be pumped.

• In this case, consider the pattern 1p + 0 = 1p where we assume p
is the pumping length.

– In any partition 1p+0 = 1p into xyz where |xy| ≤ p, all of the
symbols in x and y must correspond to substrings from the
first set of p 1s. Therefore, any string xyiz corresponding to
a value of i other than 1, will have the form 1k + 0 = 1p with
k 6= p and such strings are not elements of LBinary−addition.

– This violates the Pumping Lemma, so we can conclude that
LBinary−addition must not be regular.

6

