
CS 361 Meeting 8 — 2/26/20

Announcements
1. Homework 3 due Friday.

2. Revised office hours on Thursday (1:00-2:30 and 4:00-4:30)

Regular Expressions

1. The closure properties of regular languages provide a way to describe
regular languages by building them out of simpler regular languages
using the operations union, product and closure.

2. The notation called regular expressions is based on this fact.

Definition: Given some finite alphabet Σ, we define e to be
a regular expression if e is

• a for some a ∈ Σ

• ∅
• ε
• e0 ∪ e1, where e0 and e1 are regular expressions

• e0 ◦ e1 = e0e1 where e0 and e1 are regular expressions

• e∗0 where e0 is a regular expression.

• (e0) where e0 is a regular expression.

3. We view regular expressions as another formalism for describing lan-
guages. If e is a regular expression, the language defined by e is denoted
by L(e) and defined recursively/inductively as follows:

Base clauses

• L(x) for some a ∈ Σ is just {a}
• L(∅) is ∅
• L(ε) is {ε}

Recursive clauses

Click here to view the slides for this class

• L(e0 ∪ e1) is L(e0) ∪ L(e1)

• L(e0 ◦ e1) is L(e0)L(e1)

• L(e∗0) is L(e0)
∗

• L((e0)) is L(e0)

4. Here are some examples of regular expressions (and the strings they
describe):

• b∗#a∗ - The language Lba = {bn#am | m,n ≥ 0}
• (1 | 0)∗ or equivalently (1∪0)∗ - The language of all binary strings

• (1∗0)∗ - The language of binary strings that don’t end with a 1.

• (0∪10∗1)∗ - The language of binary strings with even parity (I’m
just not very original!)

5. Given the closure properties we have just shown, it is clear that all
regular expressions describe regular languages. It is also true, though
far from clear, that every regular language can be described by some
regular expression. Our first goal to day will be to justify this claim.

6. Here are some languages one might want to describe with regular ex-
pressions

• Binary strings of length 2 or less: (0 ∪ 1 ∪ ε)(0 ∪ 1 ∪ ε).
• Binary strings that end in 110: (0 ∪ 1)∗110.

• Binary strings that don’t end in 110:

(0 ∪ 1 ∪ ε)(0 ∪ 1 ∪ ε) ∪ (0 ∪ 1)∗(1 ∪ 010 ∪ 00)

• Binary strings that are multiples of 3:?

7. The last example raises the question of whether or not every regular
language can be described by a regular expression.

Generalize Nondeterministic Finite Automata

1. The book presents an algorithm that translates the description of a
DFA into a regular expression describing the same language. The ex-
istence of and correctness of this algorithm proves that all regular lan-
guages are described by some regular expression.

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect8slides.pdf

2. To introduce this algorithm, let’s think about how we would convert
the “divisible by 3” FDA we have considered previously into a regular
expression:

0

2

1

0

0

1

1

1

0
1

m

0

3. Looking at the diagram for this machine, it is clear that for the machine
to go from state 1 to state 2 and then get back to state 1 again, it must
encounter an input substring described by the regular expression 01∗0.
Given this fact, if we don’t really want to have to think about state
2, we could use the following diagram to capture the behavior of the
machine.

0

0

1

1

1

1
m

0

01*0

4. This diagram is an example of what the text calls a generalized non-
deterministic finite automata or GNFA. It is basically a NFA where
instead of labeling transitions with simple symbols, we allow ourselves
to use regular expressions. The idea is that the machine can move from
one state to another if it finds a sequence of input symbols that match
the regular expression on the edge connecting the states. The word
“may” is critical here. Like an NFA, we assume this machine is very
clever at guessing which strings to match with the regular expressions
labeling its edges.

5. Just as we were able to eliminate state 2 in our diagram by adding an
edge labeled with a regular expression to account for its absence we
can also eliminate state 1.

• In the reduced version of the machine, there is a path from m to
0 through 1 and there is also a path from 0 back to itself through
1. We will need to account for both paths with new edges.

• To follow the path from m to 0 we must see a string that matches
1(01∗0)∗1.

• To follow the path from 0 back to itself, we similarly must see a
string that matches 1(01∗0)∗1.

• This leads to the GNFA shown below.

0

0

1 (01*0)* 1
m

0 1 (01*0)* 1

6. We now have multiple edges from m to 0 and from 0 back to itself. In
an NFA, this would not bother us. In a GNFA, however, since we have

2

the power to use regular expressions as labels, we can eliminate such
edges by creating a single edge labeled with the union of the regular
expressions on the existing edges. Doing this to our machine yields.

0

0 U (1 (01*0)* 1)
m

0 U (1 (01*0)* 1)

7. At this point, you should be able to tell what regular expression de-
scribes the language of this machine. But it would be nice if we could
continue the approach of removing nodes from the machine until we
got to the point where we had a single edge labeled with the desired
regular expression. This is hard to do when the machine reaches the
point that all we have left is the only start state and the only final
state and they are different states.

8. Given that we have ε-transitions, we can fix this by creating a single,
external final state with ε-transitions going from what would normally
be our final states to this new state.

0

0 U (1 (01*0)* 1)
m

0 U (1 (01*0)* 1)

final
ϵ

9. Now we can use the same approach we used to eliminate states 1 and
2 to eliminate state 0 giving:

m

(0 U (1 (01*0)* 1)) (0 U (1 (01*0)* 1))*

final

10. Amazingly, if you think about it you will (may?) realize that

(0 ∪ (1(01∗0)∗1))(0 ∪ (1(01∗0)∗1))∗

actually does describe the language of binary numbers divisible by 3.

11. The algorithm in the book takes the basic approach that we just fol-
lowed, but streamlines things in several ways.

• First, rather than waiting to add a single, separate final state
when they get in trouble, the algorithm starts by adding both a
new start state and a new final state and connecting these new
states to the original start state and final states with epsilon-
transitions.

• Second, so that they don’t have to handle the merging of edges
as a special case, they immediately add edges between all states
not connected directly by edges (except for their new start and
final state) that are labeled with the regular expression ∅. They
can get away with this because such edges act as if they are not
there. In class and when doing your homework, it is not worth
adding these edges. Just merge or add edges when appropriate

12. With this in mind, let’s consider the “multiples of 3” machine again.
To make it interesting, we can remove states in a different order. Also,
I will ask you to help by telling me which edges I will have to add or
augment when I remove an existing state and by telling me what the
labels on these edges should be.

3

13. As our first step, rather than waiting until we get in trouble, we im-
mediately augment the machine with a new start state and a new final
state. We add epsilon-transitions from the new start state to the old
one and from all old final states to the new one.

0

2

1

0

0

1

1

1

01
m

0

start
ϵ

final

ϵ

14. Now, instead of removing state 2, let’s try removing state 1 first. This
will require adding edges from m to 2, from 2 to 0, and from 0 to 2.
We will also have to update the label of the edges from m to 0, and
the loops from 0 to itself and from 2 to itself. The result looks like:

2

1 U 00

0 U 11

0

m

0 U 11

start
ϵ

final

ϵ

10

01

10

15. Next we will remove state 2. This requires updating the labels of the
edges from m to 0 and from 0 to itself to reflect the paths between
these sources and destinations that currently pass through 2.

0 U 11 U 10(1 U 00)*01

0

m

0 U 11 U 10(1 U 00)*01

start
ϵ

final

ϵ

16. Finally, since the only edge from start to m is an epsilon-transition, it
is clear that we can remove both states m and 0 to obtain:

4

start

final

(0 U 11 U 10(1 U 00)*01) (0 U 11 U 10(1 U 00)*01)*

17. If you have a really good memory, you will have already noticed that
we obtained a different regular expression by performing this sequence
of state eliminations that we did last time. Eliminating 2 then 1 then
0 and m gave us:

(0 ∪ (1(01∗0)∗1))(0 ∪ (1(01∗0)∗1))∗

Eliminating 1 then 2 then 0 and m gave us:

(0 ∪ 11 ∪ 10(1 ∪ 00)∗01)(0 ∪ 11 ∪ 10(1 ∪ 00)∗01)∗

Hopefully, these two regular expressions describe the same sets!

18. My hope is that this practice gives you a clear enough understanding
of how to use GNFAs to extract a regular expression that describes
the language of a DFA. The book gives a more formal presentation
(almost a proof). You should reread (or read) that section now to
solidify you understanding and convince yourselves that the algorithm
can be applied to any DFA.

Languages that are not regular

1. We have seen two distinct examples regular expressions that
(should/might) describe the same language — binary representations

of numbers divisible by 3:

(0 ∪ (1(01∗0)∗1))(0 ∪ (1(01∗0)∗1))∗

and

(0 ∪ 11 ∪ 10(1 ∪ 00)∗01)(0 ∪ 11 ∪ 10(1 ∪ 00)∗01)∗

2. After spending hours making up the slides showing how to extract
a regular expression for a language from a DFA that recognizes the
language, I could not help thinking that it would be nice to have some
sort of “regular expression checker” that would tell me for sure that
two regular expressions actually do describe the same languages.

3. If you think about it, you will realize that what I really wanted was a
decider for the language:

LEQ−RE =
{e = e′ | e & e′ are regular expressions over Σ and L(e) = L(e′)}

4. This language is a bit more interesting than most of the examples
we have been talking about so far this semester. Certainly, it would
be harder for you to write a program that decided whether an input
belonged to this language than it would be to decide if a binary string
represented a number divisible by 3.

5. If this problem does not impress you, consider the similar problem for
a language somewhat richer than the language of regular expressions:

LEQ−Java = {j = j′ | j & j′ are Java programs that behave identically}

Those in the know might even suspect that writing a program to rec-
ognize strings that belong to this language is more than difficult.

6. For now, let’s stick to regular languages and ask whether a set like

LEQ−RE = {e = e′ | e& e′ are regular expressions over Σ and L(e) = L(e′)}

is regular.

5

7. In fact, let’s start with something even easier. In your last homework
assignment I mentioned that {a+b = c | a, b, c ∈ {0, 1}∗ and the sum of
the numbers represented by a and b in binary notation is the number
represented by c } was not regular. Let’s consider an even simpler
representation of addition:

{a + b = c | a, b, c ∈ {1}∗ and the sum of the numbers
represented by a and b in unary notation is the number rep-
resented by c }

8. That is, we would like to determine whether the language

LUnaryAdd = {1a + 1b = 1c|1k refers to a string of k 1s and a+ b = c}

is regular.

6

