Announcements
1. Homework 2 due today.

Quick Review
1. Nondeterministic finite automata allow multiple possible transitions out of a single state for a single input symbol.
2. Last time, we introduced the possibility that we could also include what we called ϵ-transition in a NFA. An ϵ-transition allows the machine to choose to switch from the source state for the transition to the destination without consuming any input.
3. We used ϵ-transitions in examples last class, but we never discussed how they get incorporated in the formalism for NFAs. That is easy to remedy.

Definition. An NFA is a five tuple $D = (Q, \Sigma, \delta, s, F)$ where:

- Q is a finite set of states
- Σ is the input alphabet
- $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)$ is a state transition function
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of accept states

where $\Sigma_\epsilon = \Sigma \cup \epsilon$.

4. The introduction of Σ_ϵ is the only change in this definition.

5. We also need to adjust our definition of $\hat{\delta}$ to accommodate the change to the transition function. To do this, we first introduce what is called the ϵ-closure of a set of states:

Definition. Let $E : \mathcal{P}(Q) \rightarrow \mathcal{P}(Q)$ be defined recursively as:

$$E(\pi) = \{q \mid q \in \pi \text{ or for some } q' \in E(\pi), q = \delta(q', \epsilon)\}$$

6. Our fancy recursive definition is just a way of saying that $E(\pi)$ is the set of all states reachable from any state in π using only ϵ-transitions.

7. Given this definition of the ϵ-closure, we can revise our extension of δ to sets of states and strings as:

$$\hat{\delta}(\pi, \epsilon) = E(\pi) \quad (\pi \in \mathcal{P}(Q))$$

$$\hat{\delta}(\pi, wx) = \bigcup_{q \in \hat{\delta}(\pi, w)} E(\delta(q, x)) \quad (\pi \in \mathcal{P}(Q), x \in \Sigma, w \in \Sigma^*)$$

8. Even with ϵ-transitions, NFAs are still equivalent in power to DFAs. That is, for any language L, there is an NFA that recognized L if and only if L is regular.

An Interesting Exercise

1. Last time we defined a language transformation that produces a new language consisting of the first halves of all strings of even length in another language:

$$L_{\frac{1}{2}} = \{x \mid \text{there exists } y \text{ such that } |x| = |y| \text{ and } xy \in L\}$$

2. We developed one way to prove that $L_{\frac{1}{2}}$ is regular if L is regular.

 • Suppose that D is a DFA that accepts A.
 • Informally, we suggested building a new machine, N, that used nondeterminism to simulate two copies of D one of which would scan the actual input to find out where D would be after reading some string that might be the first half of one of the even length inputs it would accept. The other copy would guess that state the first copy would eventually reach and then try to guess a string of the same length as the input that would move the machine from that state to a final state. If there was some way for the second simulation to “guess correctly”, then the input should be accepted.
3. Fortunately, we can continue thinking about another, very different approach we can use.

- Although we describe these simulations as two separate activities, to actually accomplish them in a NFA, they have to be tightly interlocked performing one step of each simulated machine in lock step with the other. This is the only way to make sure that the guessed suffix is the same length as the input.
- Formally, the construction we imagined could be described as follows. Given

\[D = (Q, \Sigma, \delta, s, F) \]

let

\[N = (\{s_N\} \cup Q \times Q, \Sigma, \delta_N, s_N, \{(m, m, f) \mid m \in Q, f \in F}\) \]

where

\[\delta(s_N, \epsilon) = \{(s, m, m) \mid m \in Q\} \]
\[\delta((s, m, s_y), x_i) = \{(\delta(s, x_i), m, \delta(s_y, y_i)) \mid y_i \in \Sigma\} \]

3. Fortunately, we can continue thinking about \(L_{\frac{1}{2}}\) because there is another, very different approach we can use.

- Again, suppose that \(D\) is a DFA that accepts \(L\).
- The idea is to build an NFA \(N\) that is able to walk forward as \(D\) would from the start state while simultaneously walking backward in \(D\) from one of the final states. For each step forward, \(N\) also makes one step backward.
- Keeping track of these two walks means that the state set for \(N\) must include the cross-product of the states in \(D\). This is, if the states of \(D\) form the set \(Q\), then the states of \(N\) will include \(Q \times Q\). In addition we will have to add an extra start state \(s_N\) from which there will be \(\epsilon\)-transitions to all of the possible starting pairs for \(N\).
- \(N\) has to step forward based on the input symbols it encounters, but it can guess what symbols it would have to see while walking backwards to of \(A\). In other words, if \(\delta\) is the transition function for \(D\), then the transition function \(\delta'\) for \(N\) will be:

\[\delta'(s_N, \epsilon) = \{(s, f) \mid f \in F\} \]
\[\delta'((s_x, s_y), x_i) = \{(\delta(s_x, x_i), s_y') \mid \delta(s_y', y_i) = s_y \text{ for some } y_i \in \Sigma\}. \]

- If \(N\) can guess a suffix such that the forward and backward walks end in the same state, it can accept the input. In other words, the set of final states for \(N\) is just the set of pairs in \(Q \times Q\) where both members are the same. That is, if \(D = (Q, \Sigma, \delta, s, F)\) then \(N = (Q \times Q \cup \{s_N\}, \Sigma, \delta', s_N, \{(f, f) \mid f \in Q}\)\).

4. Before leaving this fun example, it is worth discussing one concrete example of the application of the abstract transformation from a particular \(D\) to a particular \(N\) the transformation just described would produce.

- Consider the machine \(D\) shown below which recognizes the language of sequences of 0s and 1s containing a number of 1s that is a multiple of 3.

- First, it is worth asking what language we get when we apply the \(L_{\frac{1}{2}}\) transformation to the language of this machine without thinking about how a machine to accept it might be formed.

 - Given any string of length greater than 1, we can calculate the number of 1s in the string mod 3. If the answer is 2 we add a single 1, if the answer is 1, we add two 1s, and if the answer is 0, we leave it alone for a moment. Then, regardless of how many 1s we just added, we add enough 0s to double the length of the original string. The result belongs to \(L(D)!\) So, any string longer than 1 belongs to \(L(D)_{\frac{1}{2}}\).

 - In fact, the only string that is not in \(L(D)_{\frac{1}{2}}\) is “11”.

- It is pretty clear that it would be easy to build a machine to accept this language. One possibility is shown below.
Interesting, however, the machine produce by our transformation is a bit more complicated:

More Fun with NFAs

1. We can use the notion of an NFA to give some simple proofs of a few important closure properties.
 - In an earlier class, I sketched how NFAs could be used to show that regular languages are closed under the product operation.
 - Then, I suggested somehow merging the final states of a machine that recognized one language with the start state of a second machine.
 - Now, we can use the magic of ϵ-transitions to connect the appropriate states.
 - It is worth noting that this can be formalized by saying that if $M = (Q, \Sigma, \delta, s, F)$ and $M' = (Q', \Sigma, \delta', s', F')$ are DFAs that accept L and L' then $LL' = L(M_P)$ where the NFA M_P is defined as:

$$M_P = (Q \cup Q', \Sigma, \delta_P, s, F')$$

with

- $\delta_P(q, \epsilon) = \{s'\}$ if $q \in F$
- $\delta_P(q, x) = \{\delta(q, x)\}$ if $q \in Q$
- $\delta_P(q, x) = \{\delta'(q, x)\}$ if $q \in Q'$

- We can also use NFAs to give a simpler proof that regular languages are closed under union.
 - We can build a new machine by taking all of the states and transitions of two machines that recognize the languages we
are intersecting and adding a new state that will be our start state and have epsilon-transitions to the start states of the sub-machines so that our machine can guess which of the two languages its input belongs to and take the appropriate epsilon-transition into that machine’s start state.

\[L^n = LL^{n-1} \text{ otherwise and that we define} \]

\[L^* = \bigcup_{n=0}^{\infty} L^n \]

- At first, it might seem obvious that the regular languages are closed under the closure operation (both because of its name and) because the closure is a union of products and we have already shown that regular languages are closed under union and products, but...

- We have shown that regular languages are closed under finite unions. This does not imply they are closed under infinite unions.

* Every language containing just a single word is regular. Therefore, if the regular languages were closed under infinite unions, we could show that any language was regular by just union-ing together all of the languages consisting of just one word from the possibly non-regular language.

* It is also worth noting that if we think about the way we proved unions of regular languages were regular, applying the construction to an infinite set of finite automata would lead to an infinite automaton.

- We can, however, show that the closure of a regular language is regular using a construction involving NFAs with epsilon transitions. Given a machine \(M \) that recognized the language we want the closure of, the idea is to add a new, final start state (to handle the fact that \(\epsilon \) must be in the closure), allow an epsilon-transition from this state to the original start state, and also add epsilon-transitions from all of the final states back to the original start state.
That is, iv $M = (Q, \Sigma, \delta, s, F)$ is a DFA that accept L then we claim that $L^* = L(M_C)$ where the NFA M_C is defined as:

$$M_C = (Q \cup \{ s_C \}, \Sigma, \delta_C, s_C, F)$$

with

- $\delta_C(q, \epsilon) = \{ s \}$ if $q \in F$
- $\delta_C(s, \epsilon) = \{ s \}$
- $\delta_C(q, x) = \{ \delta(q, x) \}$ if $q \in Q$

accepts L^*

Regular Expressions

1. The closure properties of regular languages provide a way to describe regular languages by building them out of simpler regular languages using the operations union, product and closure.

2. The notation called *regular expressions* is based on this fact.

Definition: Given some finite alphabet Σ, we define e to be a regular expression if e is

- a for some $a \in \Sigma$
- \emptyset
- ϵ

- $e_0 \cup e_1$, where e_0 and e_1 are regular expressions
- $e_0 \circ e_1 = e_0 e_1$ where e_0 and e_1 are regular expressions
- e_0^* where e_0 is a regular expression.
- (e_0) where e_0 is a regular expression.

3. We view regular expressions as another formalism for describing languages. If e is a regular expression, the language defined by e is denoted by $L(e)$ and defined recursively/inductively as follows:

Base clauses

- $L(x)$ for some $a \in \Sigma$ is just $\{ a \}$
- $L(\emptyset)$ is \emptyset
- $L(\epsilon)$ is $\{ \epsilon \}$

Recursive clauses

- $L(e_0 \cup e_1)$ is $L(e_0) \cup L(e_1)$
- $L(e_0 \circ e_1)$ is $L(e_0)L(e_1)$
- $L(e_0^*)$ is $L(e_0)^*$
- $L((e_0))$ is $L(e_0)$

4. Given the closure properties we have just shown, it is clear that all regular expressions describe regular languages.

5. Here are some languages one might want to describe with regular expressions

- Binary strings of length 2 or less: $(0 \cup 1 \cup \epsilon)(0 \cup 1 \cup \epsilon)$.
- Binary strings that end in 110: $(0 \cup 1)^*110$.
- Binary strings that don't end in 110:

 $$(0 \cup 1 \cup \epsilon)(0 \cup 1 \cup \epsilon) \cup (0 \cup 1)^*(1 \cup 010 \cup 00)$$

- Binary strings that are multiples of 3?

6. The last example raises the question of whether or not every regular language can be described by a regular expression.