
CS 361 Meeting 7 — 2/24/20

Announcements
1. Homework 3 is now online.

More Fun with NFAs

1. We can use the notion of an NFA to give some simple proofs of a few
important closure properties.

• In an earlier class, I sketched how NFAs could be used to show
that regular languages are closed under the product operation.

– Then, I suggested somehow merging the final states of a ma-
chine that recognzied one language with the start state of a
second machine.

– Now, we can use the magic of ε-transitions to connect the
appropriate states.

S

F2

F1

...

M

S'

F'1
F'2

...

M'ϵ

ϵ

– It is worth noting that this can be formalized by saying that
if M = (Q,Σ, δ, s, F) and M ′ = (Q′,Σ, δ′, s′, F ′) are DFAs

Click here to view the slides for this class

that accept L and L′ then LL′ = L(MP) where the NFA MP

is defined as:

MP = (Q ∪Q′,Σ, δP , s, F ′)

with

∗ δP (q, ε) = {s′} if q ∈ F
∗ δP (q, x) = {δ(q, x)} if q ∈ Q
∗ δP (q, x) = {δ′(q, x)} if q ∈ Q′

• We can also use NFAs to give a simpler proof that regular lan-
guages are closed under union.

– We can build a new machine by taking all of the states and
transitions of two machines that recognize the languages we
are intersecting and adding a new state that will be our start
state and have epsilon-transitions to the start states of the
sub-machines so that our machine can guess which of the
two languages its input belongs to and take the appropriate
epsilon-transition into that machine’s start state.

S

F2

F1

...

M

S'

F'1
F'2

...

M'

SU

ϵ

ϵ

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect7slides.pdf

– Technically, we would argue that if M = (Q,Σ, δ, s, F) and
M ′ = (Q′,Σ, δ′, s′, F ′) are DFAs that accept L and L′ then
L ∪ L′ = L(M) where the NFA M is defined by:

MU = (Q ∪Q′ ∪ sU ,Σ, δU , sU , F ∪ F ′)

with

∗ δU (sU , ε) = {s, s′}
∗ δU (q, x) = {δ(q, x)} if q ∈ Q
∗ δU (q, x) = {δ′(q, x)} if q ∈ Q′

• Regular languages are closed under the closure (star) operation.

– Recall that when we write Ln we mean {ε} if n = 0 and
Ln = LLn−1 otherwise and that we define

L∗ =
∞⋃
n=0

Ln

– At first, it might seem obvious that the regular languages are
closed under the closure operation (both because of its name
and) because the closure is a union of products and we have
already shown that regular languages are closed under union
and products, but...

– We have shown that regular languages are closed under finite
unions. This does not imply they are closed under infinite
unions.

∗ Every language containing just a single word is regular.
Therefore, if the regular languages were closed under infi-
nite unions, we could show that any language was regular
by just union-ing together all of the languages consisting
of just one word from the possibly non-regular language.

∗ It is also worth noting that if we think about the way we
proved unions of regular languages were regular, apply-
ing the construction to an infinite set of finite automata
would lead to an infinite automaton.

– We can, however, show that the closure of a regular language
is regular using a construction involving NFAs with epsilon

transitions. Given a machine M that recognized the language
we want the closure of, the idea is to add a new, final start
state (to handle the fact that ε must be in the closure), allow
an epsilon-transition from this state to the original start state,
and also add epsilon-transitions from all of the final states
back to the original start state.

S

F2

F1

...

M

ϵ

ϵ

S'
ϵ

– That is, iv M = (Q,Σ, δ, s, F) is a DFA that accept L then
we claim that L∗ = L(MC) where the NFA MC is defined as:

MC = (Q ∪ {sC},Σ, δC , sC , F ∪ sC)

with

∗ δC(q, ε) = {s} if q ∈ F
∗ δC(sC , ε) = {s}
∗ δC(q, x) = {δ(q, x)} if q ∈ Q

accepts L∗

String Ninjas

1. Let’s look at an example that takes full advantage of the power of
non-determinism.

2. Suppose that we define

L 1
2

= {x | there exists y such that |x| = |y| and xy ∈ L}

Consider how we can prove that L 1
2

is regular if L is regular.

2

3. I want to explore two distinct approaches to building NFAs that show
that regular languages are closed under this operation.

• One approach is to build an NFA that simultaneously simulates a
DFA examining its input in two directions at the same time. One
copy of the simulated DFA starts at the beginning of the actual
input. The other simulated copy works its way backward from
the end of an imagined second-half of the input. The goal of the
backward simulation is to guess a string that could serve as the y
in the definition of L 1

2

• The other approach still manages two simultaneous simulations,
but both run forward. One scans the actual input. The other
guesses and scan a string that might form y from a state that the
machine also guesses will correspond to δ̂(s, x).

• In both of these simulations, we will use non-determinism to guess
things (all the letters of y and either the machine state that comes
between x and y or the final state after y). We will, however,
carefully define our final states so that they will only be reachable
if the machine makes the right guesses.

This illustrates why the power to guess is actually a reasonable
feature to include in the NFA model. NFAs can guess, but they
also have to check that there guesses were right!

4. Let’s consider the parallel forward scan version:

• Suppose that D is a DFA that accepts L.

• The idea is that given input x = x1x2 . . . xn, we want so simulate
one version of D scanning x at the same time we simulate another
version of D scanning some string y = y1y2 . . . yn in the hope of
verifying that xy ∈ L(D).

• This involves a lot of guessing. Most obviously, the second version
of D we simulate has to guess what all the yis are.

• In addition, while we want the simulation of the scan of x to start
in the start state, s of D, that is not where the scan of y should
start. Instead, we should start the scan of y in the state m =

δ̂(s, x). Our first scan will figure out what m is. Unfortunately,
it will not have figured this out yet when we need to start the
simulated scan of y. So, we also need to guess m!

• The trick that makes all this guessing work is that we will design
N to verify that all our guesses were correct. In this case, there
are two things we must verify when both scans are finished:

– We have to verify that the state we reach at the end of scan-
ning x is equal to the m we guessed as we started scanning
y. This verifies our machine’s guess of m.

– We need to verify that the scan of y from state m ends in a
final state. This verifies that the machine guessed the letters
of y correctly.

• To make all this formal, we have to specify the 5 components of
an NFA.

– The new machine will use the same alphabet, Σ, as the ma-
chine it will simulate.

– We need to be able to remember which state each of our scans
is in while also remembering the state m we guessed at the
beginning so that we can verify it at the end. Therefore,
our states must hold three states of the simulated machine so
Q×Q×Q ⊂ QN . The first state in each triple will hold the
state of the scan of x, the second state will be the value of m,
and the third state will be the current state of the scan of y.

– As our start state we will introduce a new state sN from
which ε-transitions can be used to make our guess of m. This
is the only extra state we need so the complete set of states
will be {sN} ∪Q×Q×Q.

– To be successful, our simulation must reach a state where the
scan of x ends in m and the scan of y ends in a final state of
D. So FN = {(m,m, f) | m ∈ Q, f ∈ F}.

– The initial guess of m is accomplished by including the fol-
lowing ε-transitions in the definition of δ:

δ(sn, ε) = {(s,m,m) | m ∈ Q}

– For all other states, δ(sn, ε) = ∅.

3

– Finally, the simulated scans proceed using the transitions

δ((sx,m, sy), xi) = {(δ(sx, xi),m, δ(sy, yi)) | yi ∈ Σ}

Here, sx refers to the state of the simulated version of the
machine scanning the actual input that corresponds to “x”
in the definition of L 1

2
, sy is the state of the simulated scan

of the guessed string y. xi is the next input symbol. yi is the
next symbol guessed to be in the string y.

5. Before leaving this fun example, it is worth discussing one concrete
example of the application of the abstract transformation from a par-
ticular D to a particular N the transformation just described would
produce.

• Consider the machine D shown below which recognizes the lan-
guage of sequences of 0s and 1s containing a number of 1s that is
a multiple of 3.

0 1 2

1

1 1

0 0 0

• First, it is worth asking what language we get when we apply
the L 1

2
transformation to the language of this machine without

thinking about how a machine to accept it might be formed.

– Given any string of length greater than 1, we can calculate
the number of 1s in the string mod 3. If the answer is 2 we
add a single 1, if the answer is 1, we add two 1s, and if the
answer is 0, we leave it alone for a moment. Then, regardless
of how many 1s we just added, we add enough 0s to double
the length of the original string. The result belongs to L(D)!
So, any string longer than 1 belongs to L(D) 1

2
.

– In fact, the only string that is not in L(D) 1
2

is “11”.

• It is pretty clear that it would be easy to build a machine to
accept this language. One possibility is shown below.

1

110not
1

110ϵ

0,1

0,1

1

0

• Interesting, however, the machine produce by our transformation
will have describing N 1

2
will have 33 + 1 = 28 states and a very

complicated set of transitions connecting these states.

Regular Expressions

1. The closure properties of regular languages provide a way to describe
regular languages by building them out of simpler regular languages
using the operations union, product and closure.

2. The notation called regular expressions is based on this fact.

Definition: Given some finite alphabet Σ, we define e to be
a regular expression if e is

• a for some a ∈ Σ

• ∅
• ε
• e0 ∪ e1, where e0 and e1 are regular expressions

• e0 ◦ e1 = e0e1 where e0 and e1 are regular expressions

• e∗0 where e0 is a regular expression.

• (e0) where e0 is a regular expression.

3. We view regular expressions as another formalism for describing lan-
guages. If e is a regular expression, the language defined by e is denoted
by L(e) and defined recursively/inductively as follows:

Base clauses

4

• L(x) for some a ∈ Σ is just {a}
• L(∅) is ∅
• L(ε) is {ε}

Recursive clauses

• L(e0 ∪ e1) is L(e0) ∪ L(e1)

• L(e0 ◦ e1) is L(e0)L(e1)

• L(e∗0) is L(e0)
∗

• L((e0)) is L(e0)

4. Given the closure properties we have just shown, it is clear that all
regular expressions describe regular languages.

5

