Announcements
1. Homework 2 due today.
2. Sample solutions for homework 1 are online. These are for current 361 students only. You are expected not to share them with other students who might take the course in the future.

Quick Review
1. Nondeterministic Finite Automata allow multiple possible transitions out of a single state for a single input symbol:

\[
\begin{array}{c}
\text{pre} \\
\end{array}
\]

\[
\begin{array}{c}
1 \quad 1 \quad 11 \\
1 \quad 0 \\
110 \\
\end{array}
\]

2. On a given input, the presence of multiple transitions out of some states for a given symbol means that there will be multiple paths the machine could follow for a given input string.

3. We interpret such diagrams as describing the language of strings for which it is possible to find a path from the start state to some accepting state by following any one of the transitions that are shown for each input symbol.

4. Just as we gave formal definitions to explain how to understand DFAs, we can do the same for NFAs.

- **Definition.** A NFA is a five tuple \(D = (Q, \Sigma, \delta, s, F)\) where:
 - \(Q\) is a finite set of states
 - \(\Sigma\) is the input alphabet
 - \(\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)\) is a state transition function
 - \(s \in Q\) is the start state
 - \(F \subseteq Q\) is a set of accept states

- The only difference between this definition and the definition of a DFA is the \(\delta\) returns some (possibly empty) set of states that could be the next state of the machine rather than returning the single state that is the next state.

- We define a function \(\hat{\delta}\), which extends \(\delta\) so that we can apply it to strings instead of just individual symbols:

\[
\begin{align*}
\hat{\delta}(\pi, \varepsilon) &= \pi \\
\hat{\delta}(\pi, wx) &= \bigcup_{q \in \hat{\delta}(\pi, w)} \delta(q, x) \\
\end{align*}
\]

- **Definition** \(L(D) = \{w \mid w \in \Sigma^* \text{ and } \hat{\delta}(q_0, w) \cap F \neq \emptyset\}\)

Nondeterminism = Determinism?
1. One of the most interesting properties of nondeterministic finite automata is that they are no more powerful than finite automata.

- Whether you take the parallel or the “great guesser” interpretation of nondeterminism, this should be a little surprising.

2. Our most important goal today will be to explore a proof of this fact.

Theorem: if \(L = L(N)\) for some nondeterministic finite automaton \(N\) then there is a deterministic finite automaton, \(D\) such that \(L(D) = L\).

3. The basic idea of the proof is that given a NFA \(N\), we can construct a DFA \(D\) each of whose states corresponds to some subset of states that might be simultaneously active under the parallel or “follow all possible paths” interpretation of nondeterminism.
4. With this in mind, if the machine N described in the statement of our theorem is $N = (Q, \Sigma, \delta_N, s_N, F_N)$, we will build a machine D whose set of states has one state corresponding to each subset of Q. That is, the states of D will be the set of all subsets of Q which is just the power set of Q.

$$D = (\mathcal{P}(Q), \Sigma, \delta_D, s_D, F_D)$$

5. Given this set of state, s_D should be $\{s_N\}$ representing the fact that the nondeterministic machine is limited to the single state s_N when it starts scanning its input.

6. F_D should contain all subsets of states that include any final state of N. That is

$$F_D = \{\pi \mid \pi \in \mathcal{P}(Q) \& \pi \cap F_N \neq \emptyset\}$$

This reflects the idea that if any of the possible paths of computations allowed ends in a final state then the input should be accepted.

7. δ_D should be defined to figure out where we might go from each state of N in the current state of D. That is:

$$\delta_D(\pi, x) = \bigcup_{q \in \pi} \delta_N(q, x)$$

8. To make all this formalism more concrete (and hopefully understandable) let’s see what the DFA to simulate the following NFA would look like.

The (almost complete NFA) would look like:

9. The label on each set indicates the subset of states in the NFA that correspond to that state in the DFA.

- While the set of states includes all subsets of Q, only those subset that can actually be reached from the start state on some input are actually important.
- The edges shown in black in the diagram are the edges that connect reachable states. These are the only edges that will ever actually be used.
- The edges in red show most of the edges between unreachable states that follow from the formal definition. To keep the diagram simple some of these edges (mainly transitions on 1 to the “fail” state associated with the empty set of states) have been omitted.
- Typically, when performing such a construction we would only actually show the reachable states and the connecting edges.

ϵ-transitions

1. Given that DFAs and NFAs are of equivalent power it is often easier to prove languages are regular by designing an appropriate NFA than
by defining a DFA. We will now consider another example that both
illustrates this and provides motivation for the final feature of the NFA
model, ϵ-transitions.

- Consider how you would prove that if $F = L(D)$ is the language
 of a DFA D with a single final state then $F^R = \{w \mid w^R \in F\}$
 (where w^R is the string obtained by reversing the symbols in w)
is a regular language?
 - You can construct an NFA, N, from D by reversing all of the
 edges in the diagram for D and interchanging the start and
 final states. More technically, if $D = (Q, \Sigma, \delta, s, \{f\})$, we can
 define $N = (Q, \Sigma, \delta', s, \{s\})$ where
 \[
 \delta'(q, x) = \{q' \mid \delta(q', x) = q\}
 \]
- The machine N described in this construction is likely to be a
 NFA even if D was deterministic. For example, if we apply this
 construction to our deterministic machine for recognizing binary
 numbers divisible by 3, we get a machine for recognizing strings
 that are formed by reversing binary numbers divisible by 3, but
 this machine has to guess when it is about to read the last symbol.

\[
\text{DFA} \quad \text{NFA}
\]

2. Suppose we try to generalize the result about reversing languages we
considered above to machines with multiple final states:

Lemma: If $F = L(D)$ is the language of a DFA D then
$R = \{w \mid w^R \in F\}$ is a regular language.

- The construction we sketched out above does not work because
 it assumed that the DFA had a single final state D that could
 become the single start state of the NFA N.
 - Suppose we instead start with a machine for the language of
 binary strings that don’t contain the substring 110

\[
\text{pre} \quad 11 \quad 1 \quad 0
\]

- Since the original machine had multiple final states, the
 NDFA we would produce would need to have multiple start
 states. This is not allowed in either a DFA or a NDFA.

\[
\text{pre} \quad 11 \quad 1 \quad 0
\]

- We could add a new start state to N whose transitions were chosen
 so that on the first input symbol, it could reach any state that
 could have been reached from any of the former final states of D,
 but...
- There is a nice feature that is usually included in the definition
 of the NFA that provides a cleaner way.
- The idea is to allow transitions that are labeled with the empty
 string. These are called epsilon-transitions. If an NFA reaches
 state s at some point in its computation and there is an epsilon
 transition from s to s', then the NFA can move to s' without
 consuming any input.
– Using \(\epsilon\)-transitions our reversed version of the machine for strings that don’t contain 110 would look like:

![Diagram of the reversed version of the machine for strings that don’t contain 110]

Another Interesting Exercise

1. Let’s look at an example that takes full advantage of the power of non-determinism.

2. Suppose that we define

\[
L_\frac{1}{2} = \{x \mid \text{there exists } y \text{ such that } |x| = |y| \text{ and } xy \in L\}
\]

Consider how we can prove that \(L_\frac{1}{2}\) is regular if \(L\) is regular.

3. I want to explore two distinct approaches to building NFAs that show that regular languages are closed under this operation.

 - One approach is closely related to the language reversal operation we just discussed. In this approach, we will build an NFA that simultaneously simulates a DFA examining its input in two directions at the same time. One copy of the simulated DFA starts at the beginning of the actual input. The other simulated copy works its way backward from the end of an imagined second-half of the input. The goal of the backward simulation is to guess a string that could serve as the \(y\) in the definition of \(L_\frac{1}{2}\).

 - The other approach still manages two simultaneous simulations, but both run forward. One scans the actual input. The other guesses and scan a string that might form \(y\) from a state that the machine also guesses will correspond to \(\delta(s, x)\).

4. Let’s consider the parallel forward scan version first:

 - Suppose that \(D\) is a DFA that accepts \(L\).

 - The idea is that given input \(x = x_1x_2\ldots x_n\), we want so simulate one version of \(D\) scanning \(x\) at the same time we simulate another version of \(D\) scanning some string \(y = y_1y_2\ldots y_n\) in the hope of verifying that \(xy \in L(D)\).

 - This involves a lot of guessing. Most obviously, the second version of \(D\) we simulate has to guess what all the \(y_i\)s are.

 - In addition, while we want the simulation of the scan of \(x\) to start in the start state, \(s\) of \(D\), that is not where the scan of \(y\) should start. Instead, we should start the scan of \(y\) in the state \(m = \hat{\delta}(s, x)\). Our first scan will figure out what \(m\) is. Unfortunately, it will not have figured this out yet when we need to start the simulated scan of \(y\). So, we also need to guess \(m\)!

 - The trick that makes all this guessing work is that we will design \(N\) to verify that all our guesses were correct. In this case, there are two things we must verify when both scans are finished:

 - We have to verify that the state we reach at the end of scanning \(x\) is equal to the \(m\) we guessed as we started scanning \(y\). This verifies our machine’s guess of \(m\).

 - We need to verify that the scan of \(y\) from state \(m\) ends in a final state. This verifies that the machine guessed the letters of \(y\) correctly.

 - To make all this formal, we have to specify the 5 components of an NFA.
– The new machine will use the same alphabet, Σ, as the machine it will simulate.

– We need to be able to remember which state each of our scans is in while also remembering the state m we guessed at the beginning so that we can verify it at the end. Therefore, our states must hold three states of the simulated machine so $Q \times Q \times Q \subset Q_N$. The first state in each triple will hold the state of the scan of x, the second state will be the value of m, and the third state will be the current state of the scan of y.

– As our start state we will introduce a new state s_N from which ϵ-transitions can be used to make our guess of m.

– To be successful, our simulation must reach a state where the scan of x ends in m and the scan of y ends in a final state of D. So $F_N = \{(m, m, f) \mid m \in Q, f \in F\}$.

– The initial guess of m is accomplished by including the following ϵ-transitions in the definition of δ:

$$\delta(s_n, \epsilon) = \{(s, m, m) \mid m \in Q\}$$

– Finally, the simulated scan proceeds using the transitions

$$\delta((s_x, m, s_y), x_i) = \{\delta(s_x, x_i), m, \delta(s_y, y_i)) \mid y_i \in \Sigma\}$$

Here, s_x refers to the state of the simulated version of the machine scanning the actual input that corresponds to “x” in the definition of L_1, s_y is the state of the simulated scan of the guessed string y. x_i is the next input symbol. y_i is the next symbol guessed to be in the string y.