
CS 361 Meeting 6 — 2/21/20

Announcements
1. Homework 2 due today.

2. Sample solutions for homework 1 are online. These are for current 361
students only. You are expected not to share them with other students
who might take the course in the future or to post them anywhere
others might find them.

3. Forgive my typos (or even report them) in both these lecture notes,
homework solutions and even in my comments on your homeworks.

4. Homework 3 will be posted over the weekend.

Review/Practice

1. Nondeterministic Finite Automata allow multiple possible transitions
out of a single state for a single input symbol:

110pre 1 11
1 0

0

1

1

The machine uses this extension to recognize binary strings that end
with 110.

2. Consider two language closely related to the machine shown above
(which we discussed last class):

• E = {w|w ∈ {0, 1}∗ and w contains 110}

Click here to view the slides for this class

• E = {w|w ∈ {0, 1}∗ and w does not contain 110}

3. A non-deterministic machine (very similar to the “ends in 110” machine
above) for the language E is shown below.

110
1

1 0

0

1

1

0

1pre
11 110

4. The language E is just the complement of E. For deterministic finite
automata, we argued that you could obtain a machine that recognized
the complement of another machine’s language by reversing the final
and non-final state. Applying this approach to the machine above
yields:

110
1

1 0

0

1

1

0

1pre
1111

1pre

5. What language does this machine recognize? It is not E. Instead, it
recognizes {0, 1}∗ because it can just stay in the initial (and final) state
on any sequence of 0’s and 1’s.

6. To recognize E, we have to resort to determinism:

1

http://www.cs.williams.edu/~tom/courses/361/notes/Lect6slides.pdf

110
1

1 0

0

0

1
1

0

1pre
11

Formalizing Non-determinism (Review)

1. Just as we gave formal definitions to explain how to understand DFAs,
we can do the same for NFAs. Definition. A NFA is a five tuple
D = (Q,Σ, δ, s, F) where:

Q is a finite set of states

Σ is the input alphabet

δ : Q× Σ→ P(Q) is a state transition function

s ∈ Q is the start state

F ⊆ Q is a set of accept states

2. The only difference between this definition and the definition of a DFA
is the δ returns some (possibly empty) set of states that could be the
next state of the machine rather than returning the single state that
is the next state.

3. Using this formalism, we can describe the “ends with 110” machine
drawn above as

M = ({pre, 1, 11, 110}, {0, 1}, δ, 0, {3})

where

• δ(pre, 0) = {pre}
• δ(pre, 1) = {pre, 1}
• δ(1, 1) = {11}
• δ(11, 0) = {110}

• and otherwise δ(s, d) = {}

Nondeterminism = Determinism?

1. One of the most interesting properties of nondeterministic finite au-
tomata is that they are no more powerful than finite automata.

• Whether you take the parallel or the “great guesser” interpreta-
tion of nondeterminism, this should be a little surprising.

2. Our most important goal today will be to explore a proof of this fact.

Theorem: if L = L(N) for some nondeterministic finite
automaton N then there is a deterministic finite automaton,
D such that L(D) = L.

3. The basic idea of the proof is that given a NFA N , we can construct
a DFA D each of whose states corresponds to some subset of states
that might be simultaneously active under the parallel or “follow all
possible paths” interpretation of nondeterminism.

4. With this in mind, if the machine N described in the statement of our
theorem is N = (Q,Σ, δN , sN , FN), we will build a machine D whose
set of states has one state corresponding to each subset of Q. That
is, the states of D will be the set of all subsets of Q which is just the
power set of Q.

D = (P(Q),Σ, δD, sD, FD)

5. Given this set of states, sD should be {sN} representing the fact that
the nondeterministic machine is limited to the single state sN when it
starts scanning its input.

6. FD should contain all subsets of states that include any final state of
N . That is

FD = {π | π ∈ P(Q) and π ∩ FN 6= ∅}

This reflects the idea that if any of the possible paths of computations
allowed ends in a final state then the input should be accepted.

2

7. δD should be defined to figure out where we might go from each state
of N in the current state of D. That is:

δD(π, x) =
⋃
q∈π

δN (q, x)

8. To make all this formalism more concrete (and hopefully understand-
able) let’s see what the DFA to simulate the following NFA would look
like.

1
0

0

ϵ
1

1

11010

The DFA would look like:

{ ϵ }

0

1
{ϵ ,1}

{ϵ ,10}
{ϵ ,1,
10}

{ 1, 10}

{ 10 }

{1}ø

1
0

0

ϵ
1

1

11010

0

1

10

1 or 0

0

0

0

1

9. The label on each set indicates the subset of states in the NFA that
correspond to that state in the DFA.

• While the set of states includes all subsets of Q, only those subset
that can actually be reached from the start state on some input
are actually important.

• The edges shown in black in the diagram are the edges that con-
nect reachable states. These are the only edges that will ever
actually be used.

• The edges in red show most of the edges between unreachable
states that follow from the formal definition. To keep the diagram
simple some of these edges (mainly transitions on 1 to the “fail”
state associated with the empty set of states) have been omitted.

• Typically, when performing such a construction we would only
actually show the reachable states and the connecting edges.

Closure under Reversal

1. Given that DFAs and NFAs are of equivalent power it is often easier
to prove languages are regular by designing an appropriate NFA than
by defining a DFA. We will now consider another example that both
illustrates this and provides motivation for the final feature of the NFA
model, ε-transitions.

2. Given a language L, we can define LR to be the language of all strings
obtained by reversing the strings in L. If we let wR represent the
reversal of a string w then LR = {wR | w ∈ L}.

3. For homework, I asked you to show that the reversal of the language
of binary numbers that were divisible by 3 was also a regular language.
This is, in fact, a general property of regular languages. The reversal
of any language that is regular is also a regular language.

4. The idea behind the proof of this fact is that given a DFA (or even
an NFA) M for a language L, we can construct a machine MR that
essentially simulates M running backward. That is, MR starts in the
final state of M (assuming for a moment than M only has one final
state) and on any input it follows one of the edges labeled with that
input that points to the current state backward to move to a state from
which it could have reached the previous state on the input symbol. It
accepts if it can find a backward path that leads to the start state.

3

5. To understand the process a bit better, consider how we would trans-
form the multiples of three machine.

• The diagram for our multiples-of-3 machine is shown below:

0

3n + 2

1

0

3n

3n + 1

1

1

0
1

!
0

• Consider the binary number 10010 and how we could use the
machine above to realize that this number is divisible by 3 even
if we insisted on considering the digits from right to left.

– We know the number will only be accepted by our machine if
after reading all the digits it ends up in state 3n. So, assume
this is where the machine will end up.

– Now, ask what state the machine must have been in before
the last digit (which is a 0) to end up in state 3n.

– Looking at the diagram, there are two ways to get to state
3n after seeing a 0. We must have either already have been
in state 3n or have been in the start state, ε.

– Like a good non-deterministic machine, we have to guess.
Since we know there are multiple digits to the left of the
final 0, we can guess we didn’t come from the start state and
conclude we must have come from state 3n.

– No, we know that after reading the next to last digit (a 1),
our machine would have to end up in state 3n (if it is going
to ultimately accept the input).

– The only way to get to 3n on a 1 is to come from 3n + 1 so

we can assume we were in that state before reading the last
two digits.

– To be in 3n + 1 after reading the third digit from the end (a
0), we must have come from 3n + 2.

– By similar reasoning, to get to 3n + 2 after the fourth digit
from the end (another 0), we must have been in 3n +1 after
the first digit.

– There are two ways we could reach 3n + 1 after reading the
first digit, coming from 3n or from ε. We have to guess again.
Knowing that this is the final digit the right guess is obviously
ε since this completes the process of finding a path from the
start state to a final state on the given input.

• We can turn this process into an actual finite automaton by sim-
ply reversing all of the transition edges in the original machine,
making its final state the start state and making its start state
the only final state. This transition is illustrated below:

0

2

1

0

0

1

1

1

0
1m

0

0
2

1

0

0

1

1

1

0
1m

0

m

D N

6. To generalize this result to cover finite automata with multiple fi-
nal states, it helps to incorporate a feature of nondeterministic finite
automata that we omitted initially to simplify our presentation: ε-
transitions.

• Consider the machine shown above (and repeated below) to rec-
ognize binary strings that don’t contain the substring 110:

4

110
1

1 0

0

0

1
1

0

1pre
11

• If we want to derive a machine that recognizes the reverse of
this machine’s language(binary strings that don’t contain the
substring 011), we can reverse the transition arrows and make
the start state final as we did for the divisible-by-three machine.

• The problem is that the original machine has three final states and
we cannot make all of the start states because our definition of
finite automata (whether deterministic or nondeterministic) only
allows one start state:

110
1

1 0

0

0

1
1

0

1pre
11 110

• What we really want is to let the machine chose to start in any of
these three states. The standard definition of nondeterminisitic
finite automata contains a feature that makes this possible.

ε-transitions

1. As the name suggestions, ε-transitions are transitions that a nondeter-
ministic finite automaton may take while “reading ε ” from the input
stream or more accurately without consuming any symbols from the
input.

2. If an NFA reaches state s at some point in its computation and there is
an epsilon transition from s to s′, then the NFA can move to s′ without
consuming any input.

3. As a simple example, we can solve the problem with our machine for
strings not containing 011 by adding a new start state from which it
is allowed to move to any of the former final states of “not containing
110” machine we are trying to reverse:

110
1

1 0

0

0

1
1

0

1pre
11 110

s

ϵ ϵ ϵ

4. Now that we have seen that ε-transitions can be handy when con-
struction a DFA, we need to show how they can be incorporated in
the formalism for NFAs.

Definition. An NFA is a five tuple D = (Q,Σ, δ, s, F) where:

Q is a finite set of states

Σ is the input alphabet

δ : Q× Σε → P(Q) is a state transition function

s ∈ Q is the start state

F ⊆ Q is a set of accept states

where Σε = Σ ∪ ε.

5. The introduction of Σε is the only change in this definition.

5

6. We also need to adjust our definition of δ̂ to accommodate the change
to the transition function. To do this, we first introduce what is called
the ε-closure of a set of states:

Definition. Let E : P(Q)→ P(Q) be defined recursively as:

E(π) = {q | q ∈ π or for some q′ ∈ E(π), q = δ(q′, ε)}

7. Our fancy recursive definition is just a way of saying that E(π) is the
set of all states reachable from any state in π using only ε-transitions.

8. Given this definition of the ε-closure, we can revise our extension of δ
to sets of states and strings as:

δ̂(π, ε) = E(π) (π ∈ P(Q))

δ̂(π,wx) =
⋃

q∈δ̂(π,w)

E(δ(q, x)) (π ∈ P(Q), x ∈ Σ, w ∈ Σ∗)

9. Even with ε-transitions, NFAs are still equivalent in power to DFAs.
That is, for any language L, there is an NFA that recognized L if and
only if L is regular.

More closure properties

1. When we introduced the notion of a language as a set of strings, we
also introduced a product operation specific to sets of strings in which
the strings in the product were formed by concatenating two strings
from the languages to which the product is applied.

2. Consider how we might show that regular languages are closed under
this operation.

• Given two regular languages L1 and L2, we know that there must
be two DFAs M1 and M2 with L1 = L(M1) and L2 = L(M2).
To show that L1L2 was regular, we would try to describe a way
to combine the parts of M1 and M2 to form a new machine M3

that recognized the product of the original languages. M3 would
somehow have copies of M1 and M2 inside:

S1

M1
M2

M3

...

...

...

...

S2

...

• If we start in the start state of M1 and somehow once we get to a
final state allow ourselves to act as if we are actually at the start
state of M2, each sub-machine can check that its part of the input
string belongs to the right language.

• To accomplish this, we might add transitions from the final state
of M1 (we are assuming there is just one to keep this intuitive
argument simple) to the states reachable from the start state of
M2 to the definition of M3 as suggested below:

S1

M1
M2

M3

...

...

...

...

...

1

1

S2

6

• A machine produced in this way will not be a valid DFA. The
problem is that both the final state of M1 and the start state of
M2 will have their own outgoing transition arrows for each symbol
in the alphabet (such as “1”). As a result, the edges we add will
leave the final state of M1 with two choices for its next state on
each input symbols. This requires non-determinism.

3. Given that we are using nondeterminism anyway, we can make things
simpler by just having an ε transition from each final state of M1 to
the start state of M2.

S1

M1
M2

M3

...

...

...

...

...

ϵ

S2

4. It is worth noting that this can be formalized by saying that if M1 =
(Q1,Σ, δ1, s1, F1) and M2 = (Q2,Σ, δ2, s2, F2) are DFAs that accept L1

and L2 then L1L2 = L(M3) where the NFA M3 is defined as:

M3 = (Q1 ∪Q2,Σ, δ3, s1, F2)

with

• δ3(q, ε) = {s2} if q ∈ F1

• δ3(q, x) = {δ2(q, x)} if q ∈ Q2

• δ3(q, x) = {δ1(q, x)} if q ∈ Q1

• δ3(q, x) = {} otherwise

7

