
CS 361 Meeting 5 — 2/19/20

Announcements
1. Homework 2 now available. Due Friday.

Closure Properties

1. One advantage of having formal definitions for finite state machines
and regular languages is that we can prove results showing that the set
of regular language is closed under certain set operations.

• We say that a set is closed under an operation if performing the
operation on elements of the set only produces other elements of
the set. The integers, for example, are closed under addition but
not under division.

2. Last class, we showed that the complement of any regular language
must be regular. That is, we showed that regular languages are closed
under set complement.

3. Today, we can give a similar argument to show that the intersection of
any two regular languages over the same alphabet must be regular.

• Suppose that we know that two languages L1 and L1 over the
same alphabet Σ are regular. Then we know that there must be
two DFAs M1 = (Q1,Σ, δ1, s1, F1) and M2 = (Q2,Σ, δ2, s2, F2)
such that L1 = L(M1) and L2 = L(M2)

• Consider the machine

M = (Q1 ×Q2,Σ, δ, (s1, s2), F1 × F2)

where δ((q1, q2), x) = (δ1(q1, x), δ2(q2, x)).

• The idea here is that each state (q1, q2) of the new machine si-
multaneously keeps track of the state that M1 would reach on
the current input (q1) and the state that M2 would reach on the
current input (q2).

Click here to view the slides for this class

• The key to the correctness of this construction is the fact given
the definitions of M1,M2 and M , we can show that for all w ∈ Σ∗,
δ̂((q1, q2), w) = (δ̂1(q1, w), δ̂2(q2, w)) using proof by induction on
the length of w.

Base Case: if |w| = 0, then w = ε. By the base case of the
definition of δ̂ we know that δ̂(q, ε) = q for any δ function.
Given the specific definition of δ used in the construction of
M in our argument, we can see that δ̂((q1, q2), ε) = (q1, q2) =
(δ̂1(q1, ε), δ̂2(q2, ε)) as required.

Inductive Case: Assume that

δ̂((q1, q2), w) = (δ̂1(q1, w), δ̂2(q2, w))

for any w such that |w| ≤ n. Now consider some w′ of length
n+ 1. We know that we can find a w of length n and a single
element x ∈ Σ such that w′ = wx. Then, we can see that

δ̂((q1, q2), w
′) =

δ̂((q1, q2), wx) =

δ(δ̂((q1, q2), w), x) = by def. of δ̂

δ((δ̂1(q1, w), δ̂2(q2, w)), x) = by ind. assumption

(δ1(δ̂1(q1, w), x), δ2(δ̂2(q2, w), x)) = by def. of δ

(δ̂1(q1, wx), δ̂2(q2, wx)) = by defs. of δ̂1 & δ̂2
(δ̂1(q1, w

′), δ̂2(q2, w
′))

• From this we can see argue that w ∈ L1 ∩  L2 ⇐⇒ w ∈
L1 and w ∈ L2 ⇐⇒ δ̂1(s1, w) ∈ F1 and δ̂2(s2, w) ∈ F2 ⇐⇒
(δ̂1(s1, w), δ̂2(s2, w)) ∈ F1×F2 ⇐⇒ δ̂((s1, s2), w) ∈ F1×F2 ⇐⇒
w ∈ L(M) as desired.

4. We can show that the union of two regular languages is regular using
a very similar construction in which the set of final states is instead
the all pairs of states that include at least one final state from either
machine.

Proof: Suppose that we know that two languages L1 and L1

over the same alphabet Σ are regular. Then we know that
there must be two DFAs M1 = (Q1,Σ, δ1, s1, F1) and M2 =
(Q2,Σ, δ2, s2, F2) such that L1 = L(M1) and L2 = L(M2)
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Consider the machine

M = (Q1 ×Q2,Σ, δ, (s1, s2), F1 ×Q2 ∪Q1 × F2)

where δ((q1, q2), x) = (δ1(q1, x), δ2(q2, x)).

5. Better yet, we can take a simpler approach by observing that A∪B =
Ā ∩ B̄

A Little More Practice

1. Take a moment to work on sketching a DFAs for the following language:

(a) The language of binary strings ending in 110.

2. I am guessing that the solutions you found to the exercise above look
something like:

110pre
1

1 11
1 0

0

0

1

1

0

3. Let’s consider an alternate approach to describing the language.

• If you look carefully at the state diagram for this DFA, you will
notice that the “most important” path runs straight from the
“pre” (for prefix) state to the final state. This path is shown in
red below:

110pre
1

1 11
1 0

0

0

1

1

0

• Most of the non-red edges in this machine show what to do when
something that looked like the final 110 turned out not to be!

• It would be nice if we could describe this language with a state
diagram that wasn’t so cluttered with edges that said what to do
in the non-interesting cases. It would be nice if the final machine
looked more like:

110pre 1 11
1 0

1

• This clearly isn’t good enough since it only accepts the string 110.
We somehow need to add transitions that allow the machine to
stay in the “prefix” state until it is up to the last three (hopefully)
matching symbols. To do this, we would have to add transitions
like:
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110pre 1 11
1 0

0

1

1

• This transition diagram is an example of a nondeterministic finite
automaton (or NFA). It has two features we would not allow in a
DFA:

– Some states (“pre”) have more than one outgoing edge labeled
with the same symbol. Basically, the state diagram gives this
machine a choice when it is in state “pre” and sees a 1. If it
doesn’t think that the 1 it is looking at is part of the final
110, it can just take the looping edge and stay in state “pre”.
On the other hand, if it is “feeling lucky” it can follow the
edge to state 1 and if its is indeed lucky it will end up in the
final state “110” at the end of its input.

– Some states have no transition on some symbol. Actually, this
is an accepted notational shorthand when drawing DFAs. If
a transition is omitted it means that symbol should take you
to a non-accepting state from which there is no escape. For
NFAs, however, we will include this as a fundamental part of
the definition rather than a notational convenience.

Understanding NFAs

1. There are several ways of interpreting NFAs.

• The text suggests a model in which non-determinism is tied to
parallelism. That is, when more than one path is possible, the
machine effectively clones itself and follows all paths accepting if
any of the simultaneous computations succeeds.

We can illustrate this idea by marking all the states we might be
in at each step of processing some input (like 11110110).

• I was brought up on (and prefer) a different interpretation in
which we assume that our machine is just a very good guesser.
At each point where multiple transitions are possible, the machine
guesses which one to take and if there is a sequence of guesses that
will eventually reach a final state, the machine somehow magically
guesses that alternative.

This probably sounds silly, but I will try to give some justification
for this view later.

Formalizing NFA

1. Just as we gave formal definitions to explain how to understand DFAs,
we can do the same for NFAs.

• Actually, what we will describe here is not quite the standard
definition of NFAs. We are leaving out the possibility of “ε-
transitions”. We will use the simplified version to understand
some basic properties of NFAs and then extend our definition to
the standard one later.

2. Definition. An NFA is a five tuple D = (Q,Σ, δ, s, F ) where:

Q is a finite set of states

Σ is the input alphabet

δ : Q× Σ→ P(Q) is a state transition function

s ∈ Q is the start state

F ⊆ Q is a set of accept states

3. We define a function δ̂, which extends δ so that we can apply it to
strings instead of just individual symbols:

δ̂(π, ε) = π (π ∈ P(Q))

δ̂(π,wx) =
⋃

q∈δ̂(π,w)

δ(q, x) (π ∈ P(Q), x ∈ Σ, w ∈ Σ∗)

4. Definition L(D) = {w |w ∈ Σ∗ and δ̂({s}, w) ∩ F 6= ∅}
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