
CS 361 Meeting 32 — 5/13/20

Is it Hard to Decide if a Finite Automaton
Accepts All Strings?

(Click for video)

1. In the last segment, we considered the classes of problems associ-
ated with Turing machines that operate using some limited amount
of space/tape cells.

Definition: Let s : N → R+ be a function (that increases
at least linearly with its input). Define the space complex-
ity class, SPACE(s(n)) to be the collection of all languages
that are decidable by a Turing machine using O(s(n)) dis-
tinct tape cells on inputs of size n.

2. In particular, we looked at the set of language decidable by a Turing
machine using space limited by some polynomial bound.

Definition: PSPACE is the class of language that are de-
cidable in polynomial space on a deterministic single-tape
Turing machine. In other words

PSPACE =
⋃
k

SPACE(nk)

3. We also defined the class of languages decidable by nondeterministic
Turing machines in polynomial space:

Definition: NPSPACE is the class of language that are
decidable in polynomial space on a nondeterministic single-
tape Turing machine. In other words

NPSPACE =
⋃
k

SPACE(nk)

Click here to view the slides for this class

4. We then explained Savitch’s Theorem which shows that we don’t need
to consider NPSPACE since in fact NPSPACE = PSPACE.

The key to this result was to explore for ways in which a Turing machine
could move from a given initial state to some final state recursively.

for every accepting configuration f {
if (canReach(initial configuration, f, 2s(n))) {

accept
} }

reject

canReach(start, end, steps) {
if steps == 1 {

return start == end
} else if steps == 2 {

return (start yields end)
} else {

for every mid ∈ configurations {
if (canReach(start, mid, steps/2) &

canReach(mid, end, steps/2)) {
return true

}
}

return false
}

5. This brought us a step closer to an accurate map of the classes of
languages we have discussed this semester:

1

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=4da820a0-dba0-4476-9885-abb80149cd0e
http://www.cs.williams.edu/~tom/courses/361/notes/Lect32slides.pdf

REALLY HARD!

coRECOGNIZABLE

DECIDABLE

RECOGNIZABLE

EXPTIME

PSPACE (= NPSPACE)

CoNP?NP?

P

CFL

REGULAR

DCFL

I say closer because this map is still uncertain. It is known that

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

and that
P 6= EXPTIME

so we know that one of the ⊆s on the first line must be a (, but we
don’t know which one.

6. Just as we suspect P 6= NP, it seems likely that NP is a proper subset
of PSPACE (even if P = NP). If we want to show that this is true,
our best hope is to look at the hardest problems in PSPACE and show
that one of these problems requires more than polynomial time.

7. With this in mind, let’s revisit a language we considered weeks ago.

ALLDFA = {〈A〉 | A is a DFA and L(A) = Σ∗}

8. Earlier, we argued that this language is decidable (remember?).

9. Of course, now we want to think of this question about DFAs in the
context of complexity of Turing machine algorithms by asking whether
ALLDFA belongs to any (or all) of the time and space complexity
classes we have just discussed:

• PSPACE, NP, CoNP, P, CFL, etc.

10. This is an easy one to warm you up! A DFA will reject some string
iff there is a path in the graph of states derived from the transition
function from the machine’s start state to some non-final state. So,
we just make sure there are non-final states and then run something
like Dijkstra’s algorithm to see if there are any paths from the start
state to any of the non-final states. If so (or if the input is not a
valid encoding), reject 〈A〉. Otherwise, accept. All this can be done in
polynomial time (for a small polynomial).

11. When we discussed ALLDFA a few weeks ago, we actually considered
an alternative to the graph search algorithm that was a bit less clever,
but quite simple.

• The idea was to just “check all strings” over the alphabet to make
sure they were all accepted.

• Actually, checking all strings would clearly not be practical, but
we argued that the pumping lemma gave us an easy way to limit
the search.

• Since we can easily take a DFA and switch its final and non-final
states to obtain a DFA for its complement, we can in some sense
apply the pumping lemma to strings not in the language.

• That is, if w is not in the language of the DFA and is of length
greater than the number of states, we know that there is some
substring of w that we can pump (up or) down and always obtain
another string not in the language.

2

• Based on this, we know if there is any string not in a DFA’s
language there must be one of length shorter than the size of the
DFA’s state set.

• With this in mind, we only have to search through the set of all
strings of length |Q|.
• There are, of course |Σ||Q| such strings. So, this approach takes

exponential time. (Note, that the size of the DFA’s encoded de-
scription will grow at least linearly with the size of the state set.)

• So, if this was the only algorithm we knew of for the problem, we
might suspect it belongs in PSPACE but not in P .

• This is also a good chance to talk about a class of problems I
haven’t mentioned previously, CoNP.

• CoNP is the set of problems that are complements of problems
in NP. If we want to decide if a DFA’s language is “not ALL”,
we can just guess a w /∈ L and check that we guessed right. So,
ALLDFA is in CoNP since the complement of ALLDFA is clearly
in NP (which is not surprise since both languages are actually in
P).

What About Non-deterministic Finite Automata?
(Click for video)

1. We now know that ALLDFA belongs to P.

2. Now, consider the very similar looking problem

ALLNFA = {〈A〉 | A is a NFA and L(A) = Σ∗}

3. We also know that this problem is decidable.

• We can use the subset construction to convert the NFA to a
DFA and then use the polynomial time decision procedure for
ALLDFA.

• Unfortunately, in the worst case, the subset algorithm produces
a deterministic machine with 2s states given a nondeterministic
machine with s states.

• Therefore, the procedure we have outlined appears to take expo-
nential time.

4. The näıve algorithm would also use exponential space just to
write/store the description of the deterministic machine.

Squeezing ALLNFA into PSPACE
(Click for video)

1. We can do better.

2. Rather than actually building the deterministic machine, we can sim-
ulate the execution of the nondeterministic machine on various (and
very many) possible inputs by keeping track of the states it could be
in after processing each symbol of the input. It only takes linear space
to encode the current subset of states for a given prefix of the input.

3. Thus for a given input w we would run the algorithm

NFA-accepts(Q, Σ, δ, q0, F, w) =

currentStates = { q0 }
while more symbols in w and currentStates non-empty {

x = next symbol of w

nextStates =
⋃

si∈ currentStates δ(si, x)

currertStates = nextStates
}
if no more input & currentStates contains a final state {

accept
} else {

reject
}

4. The “various” inputs we have to consider will be all strings of length
less than or equal to 2s (where s is still the number of states in the
NFA described by 〈A〉). This is because of the pumping lemma. We

3

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d2f5f628-a1ad-455f-8f86-abb80150f155
https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3687376e-24cd-4fc9-874c-abb9000ccfae

know that the pumping length of a regular language is bounded above
by the number of states of any DFA that recognizes the language. If
w /∈ L(A), then w ∈ L(A) and we know that the pumping length of
L(A) must be 2s or less since we get a DFA that recognizes L(A) by
just flipping the accept and reject states in the DFA for L(A). As a
result if |w| > 2s, we can pump down to find a smaller w′ /∈ L(A)
which means that there must be some such w′ for which |w′| < 2s.

5. Unfortunately, storing just one of these “short” inputs would take ex-
ponential space, so at first glance, this simulation algorithm seems to
have done nothing more than move the exponential space requirement
from the representation of the machine to keeping track of the input
possibilities.

6. It is time for nondeterminism to come to our rescue. Suppose we use
a nondeterministic algorithm to search for w /∈ L(A). That is, we
modify our loop to just guess each symbol in an input of length less
than or equal to 2s.

NFA-rejects-some-w(Q, Σ, δ, q0, F) =

currentStates = { q0 }
length = 0
while length ≤ 2|Q| & currentStates ∩ F 6= ∅ {

guess the next letter of w
length = length + 1
nextStates = apply δ to all elements of currentStates
currertStates = nextStates

}
if currentStates ∩ F 6= ∅ {

reject
} else {

accept
}

7. The only data the nondeterministic algorithm needs to store is the set
currentStates which we already argued requires only O(s) space and

the value of length. The value of length can get exponentially large,
but using place notation this also only requires O(s) space. So, our
algorithms space requirements are linear in the size of its input!

8. Then, we can invoke Savitch’s Theorem to conclude that we could
convert this to an O(s2) space deterministic algorithm!

9. Note that while this reduction from exponential space to n-squared
space is pretty amazing, the algorithm described still requires expo-
nential time even when viewed as a non-deterministic algorithm so we
are far from NP.

A PSPACE Complete Problem
(Click for video)

1. If we dream of showing that PSPACE is actually a bigger set than NP,
we should be looking for problems within PSPACE that are as hard
as possible. That is why the NP-complete problems are so interesting
relative to the P = NP question. If any problems in NP are not in
P, then the NP-complete problems have to be among them. So, we
should look for examples of PSPACE complete problems.

2. One might expect to define a new notion of reducibility to replace ≤p

in the definition of PSPACE-compete. Maybe something like ≤NP .
The problem is that it may be the case that P = NP . So, PSPACE
completeness is defined using polynomial time reductions:

Definition: We say that a language B is PSPACE-Complete
if B ∈ PSPACE and for all A ∈ PSPACE, A ≤p B.

3. Recall how we explored NP-Completeness:

• The Cook-Levin theorem used encodings of computation histo-
ries as boolean formulas to show that any language recognized
by a TM that ran in nondeterministic polynomial time could be
reduced to an instance of 3SAT.

• Then, we could show that another language is NP-complete by
showing how to reduce 3SAT to that language (or to any other
language previously shown to be NP-complete in this indirect
way).

4

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=af06eff9-ec24-4867-ba8e-abb9001b28ee

4. So, we would like to find some way to encode computation histories
of Turing machines that run in polynomial space as members of some
other language, thereby showing that any PSPACE computation can
be reduced to this other language.

5. Consider the language of computation histories of a Turing machine:

Definition: Given a TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject)
and a string w ∈ Σ∗, we define the language of computation
histories for M on w as:

LAccepting−Computation−History(M,w) =

{#w0#w1# . . .#wn# |
• each wi is a configuration for M ,

• w0 is the initial configuration for w,

• wn is an accept configuration, and each wi

yields wi+1 according to δ

}

6. We used this language previously when discussing whether the lan-
guage ALLCFG was recognizable. In that case, we reversed every other
configuration to make it possible to encode all invalid histories as a
CFL.

Reducing PSPACE Problems to ALLNFA
(Click for video)

1. Here, we will limit the language to histories of a polynomial space
Turing machine and discovers this makes its complement relatively
easy to recognize. So, consider:

Definition: Given a TM M = (Q,Σ,Γ, δ, q0, qaccept, qreject)
which uses at most pM (|w|) tape cells on input w and a
string w ∈ Σ∗, we define the language of polynomial space
computation histories for M on w as:

LAccepting−Polynomial−Computation−History(M,w, pM) =

{#w0#w1# . . .#wn# |
• each wi is a configuration for M ,

• w0 is the initial configuration for w,

• wn is an accept configuration, and each wi

yields wi+1 according to δ, and

• for all i, |wi| < pM (|w|)
}

2. The somewhat shocking surprise is that the complement of this lan-
guage is regular!

• We can build a NFA that guesses how and where within a
string the requirements of the language are violated and then
checks/verifies this guess.

– The first guess is that the format of the input just violates the
formatting expectations in some way (for example, there must
be exactly one symbol representing a state between every pair
of #s). Each such rule is easily checked by a DFA that our
NFA can branched to if it guesses that format is the problem.

– Next, we could verify that w0 is not an encoding of the initial
configuration. This requires a large sub-DFA with pM (|w|)
states, but is easy to do.

– The NFA might guess that the problem is that qaccept never
appears in a configuration. Again this is easy to do with a
sub-DFA whose size is independent of |w|.

– The final component is a bit tricky:

∗ Remember how in the proof of the Cook-Levin theorem
we used small boolean formulas to describe each of the
“bad” 2 by 3 sub-blocks of cells in the table of configura-
tions underlying the proof.

∗ Our NFA can guess the rows and columns where such a
bad configuration would occur in the potential computa-
tion history provided as its input.

· Guessing the row is easy. Just pick your favorite #.

· Guessing the column is a bit harder because you have to
make sure you take the same number of steps in both wi

and wi+1 when verifying the badness of the 2x3 blocks.

5

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ca6bf1a1-54b2-49bb-8f88-abb900ef43e1

· For each starting column, it takes at most pM (|w|) states
to take the machine to column c in row i and then the
same number of states to accurately get to the same
column in the next configuration.

· We need such a set of states for every possible column
we might guess. So, in total, we need p2m(|w|) states for
such positioning. This is big, but it is polynomial! An
NFA can have this many states.

3. The conclusion is a bit surprising. Given any A in PSPACE, there must
be a Turing machine MA that uses space bounded by some polynomial
pA. As a result, given a potential input w to MA, we can create a
description of an NFA that recognizes the complement of the set of
polynomial computation histories of MA on w in polynomial time in
such a way that this machine’s description belongs to ALLNFA iff
w ∈ A.

4. In other words, ALLNFA is PSPACE complete!

A Final Word
(Click for video)

1. No words can capture this material. You just have to watch the video.

6

https://williams.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=78cc0735-2ecc-4656-a0bd-abba01164f27

